Functional Analysis and Its Applications

, Volume 50, Issue 4, pp 268–280 | Cite as

Higher-dimensional Contou-Carrère symbol and continuous automorphisms

Article

Abstract

We prove that the higher-dimensional Contou-Carrère symbol is invariant under the continuous automorphisms of algebras of iterated Laurent series over a ring. Applying this property, we obtain a new explicit formula for the higher-dimensional Contou-Carrère symbol. Unlike previously known formulas, this formula holds over an arbitrary ring, not necessarily a Q-algebra, and its derivation does not employ algebraic K-theory.

Key words

iterated Laurent series over a ring higher-dimensional Contou-Carrère symbol continuous automorphisms 

References

  1. [1]
    G. Anderson and F. Pablos Romo, “Simple proofs of classical explicit reciprocity laws on curves using determinant groupoids over an Artinian local ring,” Comm. Algebra, 32:(1) (2004), 79–102.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    C. Contou-Carrère, “Jacobienne locale, groupe de bivecteurs de Witt universel, et symbole modéré,” C. R. Acad. Sci. Paris Sér. I Math., 318:(8) (1994), 743–746.MATHGoogle Scholar
  3. [3]
    C. Contou-Carrère, “Jacobienne locale d’une courbe formelle relative,” Rend. Semin. Mat. Univ. Padova, 130 (2013), 1–106.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    P. Deligne, “Le symbole modéré,” Publ. Math. IHES, 73 (1991), 147–181.MathSciNetCrossRefGoogle Scholar
  5. [5]
    S. O. Gorchinskiy and D. V. Osipov, “Explicit formula for the higher-dimensional Contou-Carrère symbol,” Uspekhi Mat. Nauk, 68:(1) (2015), 183–184; English transl.: Russian Math. Surveys, 68:1 (2015), 171–173.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    S. O. Gorchinskiy and D. V. Osipov, “Tangent space to Milnor K-groups of rings,” Trudy Mat. Inst. Steklov., 290 (2015), 34–42; English transl.: Proc. Steklov Inst. Math., 290 (2015), 26–34.MathSciNetMATHGoogle Scholar
  7. [7]
    S. O. Gorchinskiy and D. V. Osipov, “A higher-dimensional Contou-Carrère symbol: local theory,” Mat. Sb., 206:(9) (2015), 21–98; English transl.: Russian Acad. Sci. Sb. Math., 206:9 (2015), 1191–1259.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    S. O. Gorchinskiy and D. V. Osipov, “Continuous homomorphisms between algebras of iterated Laurent series over a ring,” TrudyMat. Inst. Steklov., 294 (2016), 54–75; English transl.: Proc. Steklov Inst. Math., 294 (2016), 47–66.Google Scholar
  9. [9]
    D. Grayson, “Higher algebraic K-theory. II (after Daniel Quillen),” in: Algebraic K-theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976), Lecture Notes in Math., vol. 551, Springer-Verlag, Berlin, 1976, 217–240.CrossRefGoogle Scholar
  10. [10]
    K. Kato, “A generalization of local class field theory by using K-groups. II,” J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27:(3) (1980), 603–683.MathSciNetMATHGoogle Scholar
  11. [11]
    Denis Osipov and Xinwen Zhu, “The two-dimensional Contou-Carrère symbol and reciprocity laws,” J. Algebraic Geom., 25 (2016), 703–774.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    A. N. Parshin, “Local class field theory,” Algebraic geometry and its applications. Trudy Mat. Inst. Steklov., 165 (1984), 143–170; English transl.: Proc. Steklov Inst. Math., 165 (1985), 157–185.MathSciNetMATHGoogle Scholar
  13. [13]
    A. Yekutieli, “An explicit construction of the Grothendieck residue complex. With an appendix by P. Sastry,” Astérisque, 208 (1992).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations