Functional Analysis and Its Applications

, Volume 47, Issue 1, pp 21–26 | Cite as

On the titchmarsh convolution theorem for distributions on the circle

  • A. A. KomechEmail author
  • A. I. Komech


We prove a version of the Titchmarsh convolution theorem for distributions on the circle. We show that a certain “naïve” form of the Titchmarsh theorem can be violated, but only for the convolution of distributions with certain symmetry properties.

Key words

Titchmarsh convolution theorem symmetry properties periodic distributions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Hörmander, The Analysis of Linear Partial Differential Operators. I, Springer Study Edition, Springer-Verlag, Berlin, 1990.CrossRefGoogle Scholar
  2. [2]
    A. I. Komech and A. A. Komech, “Global attractor for a nonlinear oscillator coupled to the Klein-Gordon field,” Arch. Ration. Mech. Anal., 185:1 (2007), 105–142.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    B. Y. Levin, Lectures on Entire Functions, In collaboration with Yu. Lyubarskii, M. Sodin, and V. Tkachenko, Transl. Math. Monographs, vol. 150, Amer. Math. Soc., Providence, RI, 1996.Google Scholar
  4. [4]
    J.-L. Lions, “Supports de produits de composition. I,” C. R. Acad. Sci. Paris, 232 (1951), 1530–1532.MathSciNetzbMATHGoogle Scholar
  5. [5]
    W. Strauss and L. Vazquez, “Numerical solution of a nonlinear Klein-Gordon equation,” J. Comput. Phys., 28:2 (1978), 271–278.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    E. Titchmarsh, “The zeros of certain integral functions,” Proc. London Math. Soc., 25 (1926), 283–302.zbMATHCrossRefGoogle Scholar
  7. [7]
    K. Yosida, Functional Analysis, Grundlehren der Mathematischen Wissenschaften, vol. 123, Springer-Verlag, Berlin, 1980.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute for Information Transmission ProblemsTexas A&M UniversityMoscowRussia
  2. 2.Institute for Information Transmission ProblemsUniversity of ViennaMoscowRussia

Personalised recommendations