Functional Analysis and Its Applications

, Volume 46, Issue 3, pp 232–233 | Cite as

Isometries with dense windings of the torus in C(M)

Brief Communications
  • 102 Downloads

Abstract

Let C(M) be the space of all continuous functions on M⊂ ℂ. We consider the multiplication operator T: C(M) → C(M) defined by Tf(z) = zf(z) and the torus
$$ O(M) = \left\{ {f:M \to \mathbb{C} \ntrianglelefteq \left\| f \right\| = \left\| {\frac{1} {f}} \right\| = 1} \right\} $$
. If M is a Kronecker set, then the T-orbits of the points of the torus ½O(M) are dense in ½O(M) and are ½-dense in the unit ball of C(M).

Key words

Kronecker set asymptotically finite-dimensional operator 

References

  1. [1]
    A. Lasota, T.-Y. Li, and J. A. Yorke, Trans. Amer. Math. Soc., 286: 2 (1984), 751–764.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    W. Bartoszek, Studia Math., 91: 3 (1988), 179–188.MathSciNetMATHGoogle Scholar
  3. [3]
    Vu Quoc Phong, Ukrain. Mat. Zh., 38 (1986), 688–692.MathSciNetGoogle Scholar
  4. [4]
    R. Sine, Rocky Mountain J. Math., 21: 4 (1991), 1373–1383.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    E. Yu. Emel’yanov and M. Wolff, Studia Math., 144: 2 (2001), 169–179.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    K. V. Storozhuk, J. Math. Anal. Appl., 332: 2 (2007), 1365–1370.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    E. Yu. Emel’yanov, Non-Spectral Asymptotic Analysis of One-Parameter Operator Semigroups., Operator Theory Advances and Applications, vol. 173, Birkhauser, Basel, 2007.Google Scholar
  8. [8]
    K. V. Storozhuk, Sibirsk. Mat. Zh., 50: 4 (2009), 928–932; English transl.: Siberian Math. J., 50: 4 (2009), 737–740.MathSciNetMATHGoogle Scholar
  9. [9]
    K. V. Storozhuk, Sibirsk.Mat. Zh., 52: 6 (2011), 1389–1393; English transl.: Siberian Math. J., 52: 6 (2011), 1104–1107.Google Scholar
  10. [10]
    I. P. Kornfeld, Ya. G. Sinai, and S. V. Fomin, Ergodic Theory [in Russian], Nauka, Moscow, 1980.Google Scholar
  11. [11]
    Ju. I. Lubich, Uspekhi Mat. Nauk, 18: 1 (109) (1963), 165–171.Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Sobolev institute of mathematics SB RASNovosibirsk State UniversityNovosibirskRussia

Personalised recommendations