Functional Analysis and Its Applications

, Volume 46, Issue 3, pp 191–209 | Cite as

Structure of groups of circle diffeomorphisms with the property of fixing nonexpandable points

  • D. A. FilimonovEmail author
  • V. A. Kleptsyn


We study the structure of groups of circle diffeomorphisms with the property of fixing nonexpandable points. This property generalizes the local expansivity property, and at present there are no known examples of minimal C 2 actions of finitely generated groups of circle diffeomorphisms for which this generalized property does not hold.

It turns out that if this property holds for a group action and there is at least one nonexpandable point, then the action admits a rather restrictive characterization. In particular, for such an action, we prove the existence of a Markov partition, and the structure of the action turns out to be similar to that of the Thompson group.

Key words

dynamical system group action circle diffeomorphism Markov partition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Bowen, “Invariant measures for Markov maps on the interval,” Comm. Math. Phys., 69:1 (1979), 1–17.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    R. Bowen and C. Series, “Markov maps associated with Fuchsian groups,” Publ. Math. IHES, 50:1 (1979), 153–170.zbMATHGoogle Scholar
  3. [3]
    J. Cantwell and L. Conlon, “Foliations and subshifts,” Tôhoku Math. J., 40:2 (1988), 165–187.MathSciNetCrossRefGoogle Scholar
  4. [4]
    B. Deroin, V. Kleptsyn, and A. Navas, “On the question of ergodicity for minimal group actions on the circle,” Mosc. Math. J., 9:2 (2009), 263–303.MathSciNetzbMATHGoogle Scholar
  5. [5]
    B. Deroin, V. Kleptsyn, and A. Navas, “Sur la dynamique unidimensionnelle en régularité intermédiaire,” Acta Math., 199:2 (2007), 199–262.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    É. Ghys and V. Sergiescu, “Sur un groupe remarquable de difféomorphismes du cercle,” Comment. Math. Helv., 62:2 (1987), 185–239.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Y. Guivarc’h and Y. Le Jan, “Asymptotic winding of the geodesic flow on modular surfaces and continued fractions,” Ann. Sc. Ec. Norm. Sup. (4), 26:1 (1993), 23–50.Google Scholar
  8. [8]
    Y. Guivarc’h and C. R. E. Raja, Recurrence and ergodicity of random walks on linear groups and on homogeneous spaces,
  9. [9]
    M.-R. Herman, “Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations,” Publ. Math. de l’IHES, 49 (1979), 5–234.MathSciNetzbMATHGoogle Scholar
  10. [10]
    S. Hurder, “Exceptional minimal sets and the Godbillon-Vey class,” Annales de l’Institut Fourier (Grenoble) (to appear).Google Scholar
  11. [11]
    T. Inoue, “Ratio ergodic theorems for maps with indifferent fixed points,” Ergodic Theory Dynam. Systems, 17:3 (1997), 625–642.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge, 1995.zbMATHCrossRefGoogle Scholar
  13. [13]
    D. Filimonov and V. Kleptsyn, “Lyapunov exponents and other properties of N-groups,” Trudy Moskov. Mat. Obshch., 73:1 (2012); English transl.: Trans. Moscow Math. Soc., 73:1 (2012).Google Scholar
  14. [14]
    R. Mãné, “Introdução à teoria ergódica,” Projeto Euclides, 1983; English transl.: Ergodic Theory and Differentiable Dynamics, Springer-Verlag, Berlin, 1987.Google Scholar
  15. [15]
    A. Navas, “Sur les groupes de difféomorphismes du cercle engendrés par des éléments proches des rotations,” Enseign. Math., 50:1-2 (2004), 29–68.MathSciNetzbMATHGoogle Scholar
  16. [16]
    A. Navas, Grupos de difeomorfismos del círculo, Ensaios Matemáticos, Braz. Math. Society, 2007; English transl.: Groups of circle diffeomorphisms,
  17. [17]
    M. Shub and D. Sullivan, “Expanding endomorphisms of the circle revisited,” Ergodic Theory Dynam. Systems, 5:2 (1985), 285–289.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Moscow Institute of Physics and TechnologyMoscowRussia
  2. 2.Moscow State University of Railways CommunicationsMoscowRussia
  3. 3.Institut de Recherche Mathématique de RennesCNRSRennesFrance

Personalised recommendations