Advertisement

Functional Analysis and Its Applications

, Volume 46, Issue 3, pp 173–190 | Cite as

Polynomial dynamical systems and ordinary differential equations associated with the heat equation

  • V. M. Buchstaber
  • E. Yu. Bunkova
Article

Abstract

We consider homogeneous polynomial dynamical systems in n-space. To any such system our construction matches a nonlinear ordinary differential equation and an algorithm for constructing a solution of the heat equation. The classical solution given by the Gaussian function corresponds to the case n = 0, while solutions defined by the elliptic theta-function lead to the Chazy-3 equation and correspond to the case n = 2. We explicitly describe the family of ordinary differential equations arising in our approach and its relationship with the wide-known Darboux-Halphen quadratic dynamical systems and their generalizations.

Key words

polynomial dynamical systems heat equation Chazy equation Darboux-Halphen system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Yu. Bunkova and V. M. Buchstaber, “Heat equations and families of two-dimensional sigma functions,” in: Trudy MIAN, vol. 266, MAIK, Moscow, 2009, 5–32; English transl.: Proc. Steklov Inst. Math., 266:1 (2009), 1–28.Google Scholar
  2. [2]
    P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, 2nd ed., New York, 1993.Google Scholar
  3. [3]
    R. Conte and M. Musette, The Painlevé handbook, Springer-Verlag, Dordrecht, 2008.zbMATHGoogle Scholar
  4. [4]
    V. M. Buchstaber, D. V. Leikin, and M. V. Pavlov, “Egorov hydrodynamic chains, the Chazy equation, and SL(2,ℂ),” Funkts. Anal. Prilozhen., 37:4 (2003), 13–26; English transl.: Functional Anal. Appl., 37:4 (2003), 251–262.Google Scholar
  5. [5]
    S. Chakravarty, M. J. Ablowitz, and P. A. Clarkson, “Reductions of self-dual Yang-Mills fields and classical systems,” Phys. Rev. Lett., 65:1 (1990), 1085–1087.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    B. Dubrovin, “Geometry of 2D topological field theories,” in: Lecture Notes in Math., vol. 1620, Springer-Verlag, Berlin, 1996, 120–348.Google Scholar
  7. [7]
    P. A. Clarkson and P. J. Olver, “Symmetry and the Chazy equation,” J. Differential Equations, 124:1 (1996), 225–246.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    E. T. Whittaker and G. N. Watson, A Course in Modern Analysis, 4th ed., Cambridge University Press, Cambridge, 1996.Google Scholar
  9. [9]
    “The correspondence of S. V. Kovalevskaya and G. Mittag-Leffler,” in: Scientific Heritage, vol. 7, Nauka, Moscow, 1984, Letter 57.Google Scholar
  10. [10]
    S. Chakravarty and R. G. Halburd, “First integrals and gradient flow for a generalized Darboux-Halphen system,” in: Contemp. Math., vol. 301, Amer. Math. Soc., Providence, RI, 2002, 273–281.Google Scholar
  11. [11]
    V. M. Buchstaber and D. V. Leikin, “Addition laws on Jacobian varieties of plane algebraic curves,” in: Trudy MIAN, vol. 251, Nauka, Moscow, 2005, 54–126; English transl.: Proc. Steklov Inst. Math., 251 (2005), 49–120.Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.V. A. Steklov Mathematical InstituteMoscowRussia

Personalised recommendations