Functional Analysis and Its Applications

, Volume 46, Issue 3, pp 161–172 | Cite as

Harmonic analysis on spherical homogeneous spaces with solvable stabilizer

Article

Abstract

For all spherical homogeneous spaces G/H, where G is a simply connected semisimple algebraic group and H a connected solvable subgroup of G, we compute the spectra of representations of G on spaces of regular sections of homogeneous line bundles over G/H.

Key words

algebraic group homogeneous space spherical subgroup representation semigroup 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. B. Vinberg and B. N. Kimelfeld, “Homogeneous domains on flag manifolds and spherical subgroups of semisimple Lie groups,” Funkts. Anal. Prilozhen., 12:3 (1978), 12–19; English transl.: Functional Anal. Appl., 12:3 (1978), 168–174.MathSciNetGoogle Scholar
  2. [2]
    R. S. Avdeev, “Extended weight semigroups of affine spherical homogeneous spaces of nonsimple semisimple algebraic groups,” Izv. Ross. Akad. Nauk, Ser. Mat., 74:6 (2010), 3–26; English transl.: Russian Acad. Sci. Izv. Math, 74: 6 (2010), 1103–1126.MathSciNetGoogle Scholar
  3. [3]
    M. Krämer, “Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen,” Compositio Math., 38:2 (1979), 129–153.MathSciNetMATHGoogle Scholar
  4. [4]
    F. Knop, “Weylgruppe und Momentabbildung,” Invent. Math., 99:1 (1990), 1–23.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    N. E. Gorfinkel, “Harmonic analysis on a class of spherical homogeneous spaces,” Mat. Zametki, 90:5 (2011), 703–711; English transl.: Math. Notes, 90:5 (2011), 678–685.CrossRefGoogle Scholar
  6. [6]
    D. I. Panyushev, “Complexity and rank of homogeneous spaces,” Geometriae Dedicata, 34:3 (1990), 249–269.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    R. S. Avdeev, “On solvable spherical subgroups of semisimple algebraic groups,” Trudy Moskov. Mat. Obshch., 72:1 (2011), 5–62; English transl.: Trans. Moscow Math. Soc., 2011, 1–44.Google Scholar
  8. [8]
    V. L. Popov, “Picard groups of homogeneous spaces of linear algebraic groups and onedimensional homogeneous vector bundles,” Izv. Akad. Nauk SSSR, Ser. Mat., 38:2 (1974), 294–322; English transl.: Math. USSR Izv., 8:2 (1974), 301–327.MathSciNetMATHGoogle Scholar
  9. [9]
    D. A. Timashev, Homogeneous Spaces and Equivariant Embeddings, Encyclopaedia Math. Sci., vol. 138, Springer-Verlag, Berlin-Heidelberg, 2011.MATHCrossRefGoogle Scholar
  10. [10]
    D. I. Panyushev, “Complexity and nilpotent orbits,” Manuscripta Math., 83 (1994), 223–237.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    P.-L. Montagard, “Une nouvelle propriété de stabilité du pléthysme,” Comment. Math. Helv., 71:3 (1996), 475–505.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    E. B. Vinberg and V. L. Popov, “Invariant theory,” in: Itogi Nauki i Tekhniki. Sovremennye Problemy Matematiki. Fundamental’nye Napravleniya, vol. 55, VINITI, Moscow, 1989, 137–309; English transl.: in: Algebraic Geometry. IV: Linear Algebraic Groups, Invariant Theory, Encyclopaedia Math. Sci., vol. 55, Springer-Verlag, Berlin, 1994, 123–278.Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Mechanics and MathematicsMoscow State UniversityMoscowRussia

Personalised recommendations