Phase-lock effect for equations modeling resistively shunted Josephson junctions and for their perturbations

  • Yu. S. Ilyashenko
  • D. A. Ryzhov
  • D. A. Filimonov


In this work we study dynamical systems on the torus modeling Josephson junctions in the theory of superconductivity, and also perturbations of these systems. We show that, in the family of equations that describe resistively shunted Josephson junctions, phase lock occurs only for integer rotation numbers and propose a simple method for calculating the boundaries of the corresponding Arnold tongues. This part is a simplification of known results about the quantization of rotation number [4]. Moreover, we show that the quantization of rotation number only at integer points is a phenomenon of infinite codimension. Namely, there is an infinite set of independent perturbations of systems that give rise to countably many nondiscretely located phase-locking regions.

Key words

differential equations on the torus perturbation theory Josephson effect phase lock quantization of rotation number Arnold tongues 


  1. [1]
    V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, 1988.CrossRefGoogle Scholar
  2. [2]
    V. M. Buchstaber, O. V. Karpov, and S. I. Tertychnyi, “On properties of the differential equation describing the dynamics of an overdamped Josephson junction, ” Uspekhi Mat. Nauk, 59:2 (2004), 187–188; English transl.: Russian Math. Surveys, 59:2 (2004), 377–378.MathSciNetGoogle Scholar
  3. [3]
    V. M. Buchstaber, O. V. Karpov, and S. I. Tertychnyi, “Mathematical models of the dynamics of an overdamped Josephson junction, ” Uspekhi Mat. Nauk, 63:3 (2008), 155–156; English transl.: Russian Math. Surveys, 63:3 (2008), 557–559.MathSciNetGoogle Scholar
  4. [4]
    V. M. Buchstaber, O. V. Karpov, and S. I. Tertychnyi, “Rotation number quantization effect, ” Teoret. Mat. Fiz., 162:2 (2010), 254–265; English transl.: Theor. Math. Phys., 162:2 (2010), 211–221.Google Scholar
  5. [5]
    O. G. Galkin, “Phase-locking for Mathieu-type torus maps, ” Funkts. Anal. Prilozhen., 27:1 (1993), 1–9; English transl.: Functional Anal. Appl., 27:1 (1993), 1–9.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Yu. S. Ilyashenko, Lectures on Dynamical Systems, Summer School-2009, unpublished.Google Scholar
  7. [7]
    K. K. Likharev and B. T. Ulrich, Systems with Josephson Junctions, Mosk. Gos. Univ., Moscow, 1978.Google Scholar
  8. [8]
    S. I. Tertychnyi, “On the asymptotic properties of solutions of the equation \(\dot \varphi + \sin \varphi = f\) + sinφ = f with a periodic f, ” Uspekhi Mat. Nauk, 55:1 (2000), 195–196; English transl.: Russian Math. Surveys, 55:1 (2000), 186–187.MathSciNetzbMATHGoogle Scholar
  9. [9]
    V. V. Schmidt, The Physics of Superconductors. Introduction to Fundamentals and Applications, Springer-Verlag, Berlin-Heidelberg-New York, 2002.Google Scholar
  10. [10]
    R. L. Foote, “Geometry of the Prytz planimeter, ” Rep. Math. Phys., 42:1–2 (1998), 249–271.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    O. V. Karpov, V. M. Buchstaber, S. I. Tertychniy, J. Niemeyer, and O. Kieler, “Modeling of rf-biased overdamped Josephson junctions, ” J. Appl. Phys., 104:9 (2008), 093910.CrossRefGoogle Scholar
  12. [12]
    M. Levi and S. Tabachnikov, “On bicycle tire tracks geometry, hatchet planimeter, Menzin’s conjecture and oscillation of unicycle tracks, ” Experiment. Math., 18:2 (2009), 173–186.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    S. A. Marvel, R. E. Mirollo, and S. H. Strogatz, “Identical phase oscillators with global sinusoidal coupling evolve by Möbius group action, ” Chaos, 19,no. 4 (2009).Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Yu. S. Ilyashenko
    • 1
    • 2
    • 3
  • D. A. Ryzhov
    • 4
  • D. A. Filimonov
    • 5
  1. 1.Cornell UniversityIthacaUSA
  2. 2.Moscow State UniversityMoscowRussia
  3. 3.Steklov Mathematical InstituteIndependent University of MoscowMoscowRussia
  4. 4.Chebyshev LaboratorySaint-Petersbourg State UniversitySaint-PetersbourgRussia
  5. 5.Moscow State University of Railway EngineeringMoscowRussia

Personalised recommendations