Advertisement

Functional Analysis and Its Applications

, Volume 42, Issue 4, pp 290–297 | Cite as

Horospherical transform on Riemannian symmetric manifolds of noncompact type

  • Simon GindikinEmail author
Article

Abstract

We discuss I. M. Gelfand’s project of rebuilding the representation theory of semisimple Lie groups on the basis of integral geometry. The basic examples are related to harmonic analysis and the horospherical transform on symmetric manifolds. Specifically, we consider the inversion of this transform on Riemannian symmetric manifolds of noncompact type. In the known explicit inversion formulas, the nonlocal part essentially depends on the type of the root system. We suggest a universal modification of this operator.

Key words

symmetric manifold horospherical transform inversion formula Plancherel formula 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. J. Beerends, “The Fourier transform of Harish-Chandra’s c-function and inversion of Abel transform,” Math. Ann., 277:1 (1987), 1–23.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    I. M. Gelfand, “Integral geometry and its relation to the theory of group representations,” Uspekhi Mat. Nauk, 15:2 (1960), 155–164; English transl.: Russian Math. Surveys, 15:2 (1960), 143–151.Google Scholar
  3. [3]
    I. M. Gelfand and M. I. Graev, “Geometry of homogeneous spaces, representations of groups in homogeneous spaces and related questions of integral geometry,” Trudy Moskov. Mat. Obshch., 8 (1959), 321–390; English transl.: Amer. Math. Soc. Transl. (2), vol. 7, 1964, 351–429.Google Scholar
  4. [4]
    I. M. Gelfand and M. I. Graev, “Complexes of k-dimensional planes in the space ℂn and Plancherel’s formula for the group GL(n, ℂ),” Dokl. Akad. Nauk SSSR, 179 (1968), 522–525; English transl.: Soviet Math. Dokl., 9 (1968), 394–398.MathSciNetGoogle Scholar
  5. [5]
    I. M. Gelfand, M. I. Graev, and Z. Ya. Shapiro, “Integral geometry on k-dimensional planes,” Funkts. Anal. Prilozhen., 1:1 (1967), 15–31; English transl.: Funct. Anal. Appl., 1:1 (1967), 14—27.Google Scholar
  6. [6]
    I. M. Gelfand and M. I. Graev, “An application of the horosphere method to the spectral analysis of functions in real and imaginary Lobachevskii space,” Trudy Moskov. Mat. Obshch., 11 (1962), 243–308.MathSciNetGoogle Scholar
  7. [7]
    I. M. Gelfand and M. A. Naimark, “Unitary representations of the Lorentz group,” Izv. Akad. Nauk SSSR, Ser. Mat., 11:5 (1947), 411–504.MathSciNetGoogle Scholar
  8. [8]
    S. G. Gindikin, “Unitary representations of groups of automorphisms of Riemannian symmetric spaces of null curvature,” Funkts. Anal. Prilozhen., 1:1 (1967), 32–36; English transl.: Funct. Anal. Appl., 1:1 (1967), 28–32.zbMATHMathSciNetGoogle Scholar
  9. [9]
    S. Gindikin, “Integral geometry on symmetric manifolds,” in: Algebra and Analysis (Kemerovo, 1988), Amer. Math. Soc. Transl. (2), vol. 148, 1991, 29–37.Google Scholar
  10. [10]
    S. Gindikin, “Integral geometry on SL(2; ℝ),” Math. Res. Lett., 7:4 (2000), 417–432.zbMATHMathSciNetGoogle Scholar
  11. [11]
    S. G. Gindikin and F. I. Karpelevich, “Plancherel measure for Riemannian symmetric spaces of non-positive curvature,” Dokl. Akad. Nauk SSSR, 145 (1962), 252–255; English transl.: Soviet Math. Dokl., 3 (1962), 962–965.MathSciNetGoogle Scholar
  12. [12]
    S. G. Gindikin and F. I. Karpelevich, “A problem of integral geometry,” in: Pamyati N. G. Chebotareva, Izd. Kazan. Univ., 1964, 30–43; English transl.: Selecta Math. Sov., 1 (1981), 160–184.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Departm. of Math., Hill CenterRutgers UniversityPiscatawayUSA

Personalised recommendations