Functional Analysis and Its Applications

, Volume 42, Issue 4, pp 268–278

Solution of the problem of differentiation of Abelian functions over parameters for families of (n, s)-curves



We consider a wide class of models of plane algebraic curves, so-called (n, s)-curves. The case (2, 3) is the classical Weierstrass model of an elliptic curve. On the basis of the theory of multivariate sigma functions, for every pair of coprime n and s we obtain an effective description of the Lie algebra of derivations of the field of fiberwise Abelian functions defined on the total space of the bundle whose base is the parameter space of the family of nondegenerate (n, s)-curves and whose fibers are the Jacobi varieties of these curves. The essence of the method is demonstrated by the example of Weierstrass elliptic functions. Details are given for the case of a family of genus 2 curves.

Key words

sigma function differentiation with respect to parameters universal bundle of Jacobi varieties (n, s)-curve vector field tangent to the discriminant of a singularity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V. I. Arnold, Singularities of Caustics and Wave Fronts, Kluwer Academic Publishers Group, Dordrecht, 1990.Google Scholar
  2. [2]
    V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of Differentiable Maps I, II, Birkhauser, Boston-Basel-Stuttgart, 1985, 1988.Google Scholar
  3. [3]
    H. F. Baker, Abelian Functions, Cambridge University Press, Cambridge, 1995.MATHGoogle Scholar
  4. [4]
    V. M. Buchstaber, V. Z. Enolskii, and D. V. Leykin, “Hyperelliptic Kleinian functions and applications,” in: Solitons, Geometry and Topology: On the Crossroad, Adv. Math. Sci., Amer. Math. Soc. Transl. Ser. 2, vol. 179, Amer. Math. Soc., Providence, RI, 1997, 1–34.Google Scholar
  5. [5]
    V. M. Buchstaber, V. Z. Enolskii, and D. V. Leykin, “Kleinian functions, hyperelliptic Jacobians and applications,” Rev. Math. Math. Phys., 10:2 (1997), 3–120.MATHGoogle Scholar
  6. [6]
    V. M. Buchstaber, D. V. Leykin, and V. Z. Enolskii, “Rational analogs of Abelian functions,” Funkts. Anal. Prilozhen., 33:2 (1999), 1–15; English transl.: Funct. Anal. Appl., 33:2 (1999), 83–94.Google Scholar
  7. [7]
    V. M. Buchstaber and D. V. Leykin, “Polynomial Lie algebras,” Funkts. Anal. Prilozhen., 36:4 (2002), 18–34; English transl.: Funct. Anal. Appl., 36:4 (2002), 267–280.Google Scholar
  8. [8]
    V. M. Buchstaber and D. V. Leykin, “Heat equations in a nonholonomic frame,” Funkts. Anal. Prilozhen., 38:2 (2004), 12–27; English transl.: Funct. Anal. Appl., 38:2 (2004), 88–101.Google Scholar
  9. [9]
    V. M. Buchstaber and D. V. Leykin, “Differentiation of Abelian functions with respect to parameters,” Uspekhi Mat. Nauk, 62:4 (2007), 153–154; English transl.: Russian Math. Surveys, 62: 4 (2007), 787–789.MathSciNetGoogle Scholar
  10. [10]
    B. A. Dubrovin, “Geometry of 2D topological field theories,” in: Lecture Notes in Math., vol. 1620, 1994, 120–348.CrossRefMathSciNetGoogle Scholar
  11. [11]
    B. A. Dubrovin and S. P. Novikov, “A periodic problem for the Korteweg-de Vries and Sturm-Liouville equations. Their connection with algebraic geometry,” Dokl. Akad. Nauk SSSR, 219:3 (1974), 531–534; English transl.: Soviet Math. Dokl., 15 (1974), 1597–1601.MathSciNetGoogle Scholar
  12. [12]
    F. G. Frobenius and L. Stickelberger, “Über die Differentiation der elliptischen Funktionen nach den Perioden und Invarianten,” J. Reine Angew. Math., 92 (1882), 311–337.Google Scholar
  13. [13]
    A. B. Givental, “Displacement of invariants of groups that are generated by reflections and are connected with simple singularities of functions,” Funkts. Anal. Prilozhen., 14:2 (1980), 4–14; English transl.: Funct. Anal. Appl., 14:2 (1980), 81–89.MATHMathSciNetGoogle Scholar
  14. [14]
    K. Weierstrass, “Zur Theorie der elliptischen Funktionen,” in: Mathematische Werke, Bd. 2, Teubner, Berlin, 1894, 245–255.Google Scholar
  15. [15]
    K. Weierstrass, Abelsche Funktionen, Gesammelte Werke, Bd. 4, 1904.Google Scholar
  16. [16]
    V. M. Zakalyukin, “Reconstructions of wave fronts depending on one parameter,” Funkts. Anal. Prilozhen., 10:2 (1976), 69–70; English transl.: Funct. Anal. Appl., 10:2 (1976), 139–140.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteSteklovRussia
  2. 2.Institute of MagnetismKievUkraine

Personalised recommendations