Functional Analysis and Its Applications

, Volume 42, Issue 3, pp 224–226 | Cite as

On the measure with maximal entropy for the Teichmüller flow on the moduli space of Abelian differentials

Article

Abstract

The Teichmüller flow gt on the moduli space of Abelian differentials with zeros of given orders on a Riemann surface of a given genus is considered. This flow is known to preserve a finite absolutely continuous measure and is ergodic on every connected component ℋ of the moduli space. The main result of the paper is that µ/µ(ℋ) is the unique measure with maximal entropy for the restriction of gt to ℋ. The proof is based on the symbolic representation of gt.

Key words

moduli space Teichmüller flow suspension flow topological Bernoulli shift topological Markov shift Markov-Bernoulli reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. M. Abramov and V. A. Rokhlin, Vestn. LGU, 2:7 (1962), 5–13.Google Scholar
  2. [2]
    A. I. Bufetov, J. Amer. Math. Soc., 19:3 (2006), 579–623.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    J. Buzzi and O. Sarig, Ergodic Theory Dynam. Systems, 23:5 (2003), 1383–1400.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    J. Hubbard and H. Masur, Acta. Math., 142:3–4 (1979), 221–274.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    M. Kontsevich, in: The Mathematical Beauty of Physics, Adv. Ser. Math. Phys., vol. 24, World Sci. Publ., River Edge, NJ, 1997, 318–332.Google Scholar
  6. [6]
    M. Kontsevich and A. Zorich, Invent. Math., 153:3 (2003), 631–678.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    H. Mazur, Ann. of Math. (2), 115:1 (1982), 169–200.CrossRefMathSciNetGoogle Scholar
  8. [8]
    G. Rauzy, Acta Arith., 34:4 (1979), 315–328.MATHMathSciNetGoogle Scholar
  9. [9]
    W. Veech, Ann. of Math. (2), 115:1 (1982), 201–242.CrossRefMathSciNetGoogle Scholar
  10. [10]
    W. Veech, Ann. of Math. (2), 124:3 (1986), 441–530.CrossRefMathSciNetGoogle Scholar
  11. [11]
    A. Zorich, in: Frontiers in Number Theory, Physics and Geometry. Vol. 1. On Random Matrices, Zeta Functions, and Dynamical Systems, Springer-Verlag, Berlin, 2006, 437–583.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Rice UniversityHoustonUSA
  2. 2.Moscow State University, Institute for Problems of Information TransmissionRussian Academy of SciencesMoscowRussia

Personalised recommendations