Advertisement

Functional Analysis and Its Applications

, Volume 42, Issue 2, pp 103–115 | Cite as

The Lorentz-invariant deformation of the Whitham system for the nonlinear Klein-Gordon equation

  • A. Ya. Maltsev
Article

Abstract

We consider a deformation of the Whitham system for the nonlinear Klein-Gordon equation. This deformation has a Lorentz-invariant form. Using the Lagrangian formalism of the original system, we obtain the first nontrivial correction to the Whitham system in the Lorentz-invariant approach.

Key words

asymptotic method slow modulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Whitham, “A general approach to linear and non-linear dispersive waves using a Lagrangian,” J. Fluid Mech., 22 (1965), 273–283.CrossRefMathSciNetGoogle Scholar
  2. [2]
    G. Whitham, “Non-linear dispersive waves,” Proc. Roy. Soc. London Ser. A, 283 (1965), 238–261.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    G. Whitham, Linear and Nonlinear Waves, Wiley, New York-London-Sydney, 1974.MATHGoogle Scholar
  4. [4]
    J. C. Luke, “A perturbation method for nonlinear dispersive wave problems,” Proc. Roy. Soc. London Ser. A, 292:1430 (1966), 403–412.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    M. J. Ablowitz and D. J. Benney, “The evolution of multi-phase modes for nonlinear dispersive waves,” Stud. Appl. Math., 49 (1970), 225–238.MATHGoogle Scholar
  6. [6]
    M. J. Ablowitz, “Applications of slowly varying nonlinear dispersive wave theories,” Stud. Appl. Math., 50 (1971), 329–344.MATHGoogle Scholar
  7. [7]
    M. J. Ablowitz, “Approximate methods for obtaining multi-phase modes in nonlinear dispersive wave problems,” Stud. Appl. Math., 51 (1972), 17–55.MATHGoogle Scholar
  8. [8]
    W. D. Hayes, “Group velocity and non-linear dispersive wave propagation,” Proc. Roy. Soc. London Ser. A, 332 (1973), 199–221.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    A. V. Gurevich and L. P. Pitaevskii, “Decay of initial discontinuity in the Korteweg-de Vries equation,” Pis’ma v ZhETF, 17:5 (1973), 268–271; English transl.: JETP Lett., 17 (1973), 193–195.Google Scholar
  10. [10]
    A. V. Gurevich and L. P. Pitaevskii, “Nonstationary structure of collisionless shock waves,” ZhETF, 65:8 (1973), 590–604; English transl.: Sov. Phys. JETP, 38 (1974), 291–297.Google Scholar
  11. [11]
    H. Flaschka, M. G. Forest, and D. W. McLaughlin, “Multiphase averaging and the inverse spectral solution of the Korteweg-de Vries equation,” Comm. Pure Appl. Math., 33:6 (1980), 739–784.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    S. Yu. Dobrokhotov and V. P. Maslov, “Finite-gap almost periodic solutions in the WKB approximation,” in: Itogi Nauki i Tekhniki. Current Problems in Mathematics [in Russian], vol. 15, VINITI, Moscow, 1980, 3–94; English transl.: J. Soviet Math., 15 (1980), 1433–1487.Google Scholar
  13. [13]
    S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons. the Inverse Scattering Method, Plenum, New York, 1984.Google Scholar
  14. [14]
    B. A. Dubrovin and S. P. Novikov, “Hamiltonian formalism of one-dimensional systems of hydrodynamic type and the Bogolyubov-Whitham averaging method,” Dokl. Akad. Nauk SSSR, 270:4 (1983), 781–785; English transl.: Soviet Math. Dokl., 27:3 (1983), 665–669.MathSciNetGoogle Scholar
  15. [15]
    P. D. Lax and C. D. Levermore, “The small dispersion limit for the Korteweg-de Vries equation I, II, III,” Comm. Pure Appl. Math., 36:3 (1983), 253–290, 36:5 (1983), 571–593, 36:6 (1983), 809–830.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    S. P. Novikov, “The geometry of conservative systems of hydrodynamic type. The method of averaging for field-theoretical systems,” Uspekhi Mat. Nauk, 40:4 (1985), 79–89; English transl.: Russian Math. Surveys, 40:4 (1985), 85–98.MATHMathSciNetGoogle Scholar
  17. [17]
    V. V. Avilov and S. P. Novikov, “Evolution of the Whitham zone in KdV theory,” Dokl. Akad. Nauk SSSR, 294:2 (1987), 325–329; English transl.: Soviet Phys. Dokl., 32 (1987), 366–368.MathSciNetGoogle Scholar
  18. [18]
    A. V. Gurevich and L. P. Pitaevskii, “Averaged description of waves in the Korteweg-de Vries-Burgers equation,” ZhETF, 93:3 (1987), 871–880; English transl.: Soviet Phys. JETP, 66 (1987), 490–495.MathSciNetGoogle Scholar
  19. [19]
    V. V. Avilov, I. M. Krichever, and S. P. Novikov, “Evolution of the Whitham zone in the Korteweg-de Vries theory,” Dokl. Akad. Nauk SSSR, 295:2 (1987), 345–349; English transl.: Soviet Phys. Dokl., 32 (1987), 564–566.MathSciNetGoogle Scholar
  20. [20]
    I. M. Krichever, “Method of averaging for two-dimensional ‘integrable’ equations,” Funkts. Anal. Prilozhen., 22:3 (1988), 37–52; English transl.: Functional Anal. Appl., 22 (1988), 200–213.MathSciNetGoogle Scholar
  21. [21]
    R. Haberman, “The modulated phase shift for weakly dissipated nonlinear oscillatory waves of the Korteweg-de Vries type,” Stud. Appl. Math., 78:1 (1988), 73–90.MATHMathSciNetGoogle Scholar
  22. [22]
    B. A. Dubrovin and S. P. Novikov, “Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory,” Uspekhi Mat. Nauk, 44:6 (1989), 29–98; English transl.: Russian Math. Surveys, 44:6 (1989), 35–124.MathSciNetGoogle Scholar
  23. [23]
    B. A. Dubrovin and S. P. Novikov, “Hydrodynamics of soliton lattices,” Sov. Sci. Rev., sect. C, Math. Phys., 9:4 (1993), 1–136.MATHMathSciNetGoogle Scholar
  24. [24]
    S. P. Tsarev, “On Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type,” Dokl. Akad. Nauk SSSR, 282:3 (1985), 534–537; English transl.: Soviet Math. Dokl., 31:3 (1985), 488–491.MathSciNetGoogle Scholar
  25. [25]
    O. I. Mokhov and E. V. Ferapontov, “Nonlocal Hamiltonian operators of hydrodynamic type related to metrics of constant curvature,” Uspekhi Matem. Nauk, 45:3 (1990), 191–192; English transl.: Russian Math. Surveys, 45:3 (1990), 218–219.MathSciNetGoogle Scholar
  26. [26]
    E. V. Ferapontov, “Differential geometry of nonlocal Hamiltonian operators of hydrodynamic type,” Funkts. Anal. Prilozhen., 25:3 (1991), 37–49; English transl.: Functional Anal. Appl., 25:3 (1991), 195–204.MathSciNetGoogle Scholar
  27. [27]
    E. V. Ferapontov, “Dirac reduction of the Hamiltonian operator \(\delta ^{IJ} \frac{d}{{dx}}\) to a submanifold of the Euclidean space with flat normal connection,” Funkts. Anal. Prilozhen., 26:4 (1992), 83–86; English transl.: Functional Anal. Appl., 26:4 (1992), 298–300.MathSciNetGoogle Scholar
  28. [28]
    E. V. Ferapontov, “Nonlocal matrix Hamiltonian operators, differential geometry, and applications,” Teor. Mat. Fiz., 91:3 (1992), 452–462; English transl.: Theor. Math. Phys., 91:3 (1992), 642–649.MathSciNetGoogle Scholar
  29. [29]
    E. V. Ferapontov, “Nonlocal Hamiltonian operators of hydrodynamic type: differential geometry and applications,” in: Amer. Math. Soc. Transl. (2), vol. 170, Amer. Math. Soc., Providence, RI, 1995, 33–58.Google Scholar
  30. [30]
    M. V. Pavlov, “Elliptic coordinates and multi-Hamiltonian structures of systems of hydrodynamic type,” Dokl. Ross. Akad. Nauk, Ser. Mat., 339:1 (1994), 21–23; English transl.: Russian Acad. Sci. Dokl. (Math.), 50:3 (1995), 374–377.Google Scholar
  31. [31]
    A. Ya. Maltsev and S. P. Novikov, “On the local systems Hamiltonian in the weakly nonlocal Poisson brackets,” Phys. D, 156:1–2 (2001), 53–80.MATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    A. Ya. Maltsev, “The averaging of non-local Hamiltonian structures in Whitham’s method,” Intern. J. Math. Math. Sci., 30:7 (2002), 399–434.MATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    B. A. Dubrovin, “Integrable systems in topological field theory,” Nucl. Phys. B, 379:3 (1992), 627–689.CrossRefMathSciNetGoogle Scholar
  34. [34]
    B. A. Dubrovin, Integrable Systems and Classification of 2-dimensional Topological Field Theories, http://arxiv.org/abs/hep-th/9209040.
  35. [35]
    B. A. Dubrovin, Geometry of 2d Topological Field Theories, http://arxiv.org/abs/hep-th/9407018.
  36. [36]
    B. A. Dubrovin, “Flat pencils of metrics and Frobenius manifolds,” in: Proc. of 1997 Taniguchi Symposium “Integrable Systems and Algebraic Geometry”, World Sci. Publ., River Edge, NJ, 1998, 47–72; http://arxiv.org/abs/math.DG/9803106.Google Scholar
  37. [37]
    B. A. Dubrovin and Y. Zhang, “Bihamiltonian hierarchies in 2D topological field theory at one-loop approximation,” Comm. Math. Phys., 198 (1998), 311–361.MATHCrossRefMathSciNetGoogle Scholar
  38. [38]
    B. A. Dubrovin, Geometry and Analytic Theory of Frobenius Manifolds, http://arxiv.org/abs/math.AG/9807034.
  39. [39]
    B. A. Dubrovin and Y. Zhang, Normal Forms of Hierarchies of Integrable PDEs, Frobenius Manifolds and Gromov-Witten Invariants, http://arxiv.org/abs/math.DG/0108160.
  40. [40]
    P. Lorenzoni, “Deformations of bihamiltonian structures of hydrodynamic type,” J. Geom. Phys., 44:2–3 (2002), 331–371.MATHCrossRefMathSciNetGoogle Scholar
  41. [41]
    B. A. Dubrovin and Y. Zhang, Virasoro Symmetries of the Extended Toda Hierarchy, http://arxiv.org/abs/math.DG/0308152.
  42. [42]
    S.-Q. Liu and Y. Zhang, Deformations of Semisimple Bihamiltonian Structures of Hydrodynamic Type, http://arxiv.org/abs/math.DG/0405146.
  43. [43]
    S.-Q. Liu and Y. Zhang, On the Quasitriviality of Deformations of Bihamiltonian Structures of Hydrodynamic Type, http://arxiv.org/abs/math.DG/0406626.
  44. [44]
    B. Dubrovin, S.-Q. Liu, and Y. Zhang, On Hamiltonian Perturbations of Hyperbolic Systems of Conservation Laws, http://arxiv.org/abs/math.DG/0410027.
  45. [45]
    B. Dubrovin, Y. Zhang, and D. Zuo, Extended Affine Weyl Groups and Frobenius Manifolds-II, http://arxiv.org/abs/math.DG/0502365.
  46. [46]
    A. Ya. Maltsev, “Whitham systems and deformations,” J. Math. Phys., 47:7 (2006).Google Scholar
  47. [47]
    A. Ya. Maltsev, The Deformations of Whitham Systems and Lagrangian Formalism, http://arxiv.org/abs/nlin.SI/0601050.

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.L. D. Landau Institute for Theoretical PhysicsRussia

Personalised recommendations