Functional Analysis and Its Applications

, Volume 41, Issue 2, pp 154–167

# Dissipative operators in the Krein space. Invariant subspaces and properties of restrictions

• A. A. Shkalikov
Article

## Abstract

We prove that a dissipative operator in the Krein space has a maximal nonnegative invariant subspace provided that the operator admits matrix representation with respect to the canonical decomposition of the space and the upper right operator in this representation is compact relative to the lower right operator. Under the additional assumption that the upper and lower left operators are bounded (the so-called Langer condition), this result was proved (in increasing order of generality) by Pontryagin, Krein, Langer, and Azizov. We relax the Langer condition essentially and prove under the new assumptions that a maximal dissipative operator in the Krein space has a maximal nonnegative invariant subspace such that the spectrum of its restriction to this subspace lies in the left half-plane. Sufficient conditions are found for this restriction to be the generator of a holomorphic semigroup or a C 0-semigroup.

## Key words

dissipative operator Pontryagin space Krein space invariant subspace C0-semigroup holomorphic semigroup

## References

1. [1]
F. V. Atkinson, H. Langer, R. Mennicken, and A. A. Shkalikov, “The essential spectrum of some matrix operators,” Math. Nachr., 167 (1994), 5–20.
2. [2]
T. Ya. Azizov, “Invariant subspaces and criteria for the completeness of the system of root vectors of J-dissipative operators in the Pontrjagin space Π,” Dokl. Akad. Nauk SSSR, 200:5 (1971), 1015–1017; English transl.: Soviet Math. Dokl., 12 (1971), 1513–1516.Google Scholar
3. [3]
T. Ya. Azizov, “Dissipative operators in a Hilbert space with indefinite metric,” Izv. Akad. Nauk SSSR Ser. Mat., 37:3 (1973), 639–662; English transl.: Math. USSR Izv., 7 (1973), 639–660.Google Scholar
4. [4]
T. Ya. Azizov and S. A. Khoroshavin, “Invariant subspaces of operators acting in a space with an indefinite metric,” Funkts. Anal. Prilozhen., 14:4 (1980), 1–7; English transl.: Functional Anal. Appl., 14:4 (1980), 247–252.Google Scholar
5. [5]
T. Ya. Azizov and I. S. Iokhvidov, Foundations of the Theory of Linear Operators in Spaces with Indefinite Metric [in Russian], Nauka, Moscow, 1986.
6. [6]
M. A. Dritschel, “A method for constructing invariant subspaces for some operators on Krein spaces, ” in: Operator Theory: Advances and Applications, vol. 61, Birkhauser, Basel-Boston, 1993, 85–113.Google Scholar
7. [7]
M. A. Dritschel, “Compact perturbations of operators on Krein spaces,” in: Contemp. Math., vol. 189, Amer. Math. Soc., Providence, RI, 1995, 201–211.Google Scholar
8. [8]
K. J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Springer-Verlag, Berlin-Heidelberg-New York, 2000.
9. [9]
I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Transl. Math. Monographs, vol. 18, Amer. Math. Soc., Providence, RI, 1969.
10. [10]
A. M. Gomilko, “Invariant subspaces of J-dissipative operators,” Funkts. Anal. Prilozhen., 19:3 (1985), 61–62; English transl.: Functional Anal. Appl., 19:3 (1985), 213–214.
11. [11]
P. R. Halmos, A Hilbert Space Problem Book, Springer-Verlag, New York-Heidelberg-Berlin, 1967.
12. [12]
P. Jonas, “Compact perturbations of definitizable operators. II,” J. Operator Theory, 8:1 (1982), 3–18.
13. [13]
P. Jonas, “On a class of self-adjoint operators in Krein space and their compact perturbations, ” Integral Equations Operator Theory, 11:3 (1988), 351–384.
14. [14]
T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York-Heidelberg, 1966.
15. [15]
A. G. Kostyuchenko and M. B. Orazov, “Certain properties of the roots of a self-adjoint quadratic pencil,” Funkts. Anal. Prilozhen., 9:4 (1975), 28–40; English transl.: Functional Anal. Appl., 9 (1975), 295–305.Google Scholar
16. [16]
M. G. Krein, “On an application of the fixed point principle in the theory of linear transformations of spaces with an indefinite metric,” Uspekhi Mat. Nauk, 50:2(36) (1950), 180–190.Google Scholar
17. [17]
M. G. Krein, “A new application of the fixed-point principle in the theory of operators in a space with indefinite metric,” Dokl. Akad. Nauk SSSR, 154:5 (1964), 1023–1026.Google Scholar
18. [18]
M. G. Krein and G. K. Langer, “The defect subspaces and generalized resolvents of a Hermitian operator in the space Π,” Funkts. Anal. Prilozhen., 1971, No. 2, 59–71; 5: 3 (1971), 54–69; English transl.: Functional Anal. Appl., 1971, No. 2, 126–146; 5:3 (1971), 217–228.Google Scholar
19. [19]
G. K. Langer, “On J-Hermitian operators,” Dokl. Akad. Nauk SSSR, 134:2 (1960), 263–266.Google Scholar
20. [20]
H. Langer, “Eine Veralgemeinerung eines Satzes von L. S. Pontrjagin,” Math. Ann., 152:5 (1963), 434–436.
21. [21]
H. Langer, “Invariant subspaces for a class of operators in spaces with indefinite metric,” J. Funct. Anal., 19:3 (1975), 232–241.
22. [22]
H. Langer, “Spectral functions of definitizable operators in Krein spaces,” Lecture Notes in Math., 948 (1982), 1–46.Google Scholar
23. [23]
R. Mennicken and A. A. Shkalikov, “Spectral decomposition of symmetric operator matrices,” Math. Nachr., 179 (1996), 259–273.
24. [24]
L. S. Pontryagin, “Hermitian operators in spaces with indefinite metric,” Izv. Akad. Nauk SSSR, Ser. Mat., 8 (1944), 243–280.
25. [25]
A. A. Shkalikov, “On the existence of invariant subspaces of dissipative operators in the Krein space,” Fundam. Prikl. Mat., 5:2 (1999), 627–635.
26. [26]
A. A. Shkalikov, “Selection principles and properties of a part of eigen-and associated elements of operator pencils,” Vestnik Moskov. Univ. Ser. I Mat. Mekh., 43:4 (1988), 16–25; English transl.: Moscow Univ. Math. Bull., 43:4 (1988), 16–28.
27. [27]
A. A. Shkalikov, “On invariant subspaces of dissipative operators in a space with an indefinite metric,” Trudy Mat. Inst. Steklov., 248 (2005), 294–303; English transl.: Proc. Steklov Inst. Math., 248:1 (2005), 287–296.Google Scholar
28. [28]
S. L. Sobolev, “The motion of a symmetric top with cavity filled with liquid,” Zh. Prikl. Mekh. Tekh. Fiz., 1960, No. 3, 20–55.Google Scholar