On Degrees of Growth of Finitely Generated Groups

  • A. G. Erschler


We prove that for an arbitrary function ρ of subexponential growth there exists a group G of intermediate growth whose growth function satisfies the inequality v G,S (n) ⩾ ρ(n) for all n. For every prime p, one can take G to be a p-group; one can also take a torsion-free group G. We also discuss some generalizations of this assertion.

Key words

growth of groups intermediate growth Grigorchuk group 


  1. 1.
    A. Erschler, Ann. of Math., 160, No.3, 1183–1210 (2004).MathSciNetCrossRefGoogle Scholar
  2. 2.
    R. I. Grigorchuk, Funkts. Anal. Prilozhen., 14, No.1, 53–54 (1980); English transl.: Funct. Anal. Appl., 14, No. 1, 41–43 (1980).MathSciNetMATHGoogle Scholar
  3. 3.
    R. I. Grigorchuk, Izv. Akad. Nauk SSSR Ser. Mat., 48, No.5, 939–985 (1984); English transl.: Math. USSR Izv., 25, No. 2, 259–300 (1985).MathSciNetGoogle Scholar
  4. 4.
    R. I. Grigorchuk, Mat. Sb., 126(168), No. 2, 194–214 (1985); English transl.: Math. USSR Sb., 54, No. 1, 185–205 (1986).MathSciNetMATHGoogle Scholar
  5. 5.
    R. I. Grigorchuk, Growth Functions of Finitely Generated Groups and Their Applications [in Russian], D.Sc. Thesis, Steklov Mathematical Institute, Moscow, 1985.Google Scholar
  6. 6.
    R. I. Grigorchuk and P. F. Kurchanov, In: Itogi Nauki I Tekhniki, Current Problems in Mathematics, Fundamental Directions [in Russian], Vol. 58, VINITI, Moscow, 1990, pp. 191–256; English transl. in: Algebra VII, Combinatorial Group Theory, Applications of Geometry, Encycl. Math. Sci., Vol. 58, Springer-Verlag, New York, 1993, pp. 167–232.Google Scholar
  7. 7.
    M. Gromov, Publ. Math. Inst. Hautes Etudes Sci., 53, 53–73 (1981).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    P. de la Harpe, Topics in Geometric Group Theory, University of Chicago Press, Chicago, 2000.MATHGoogle Scholar
  9. 9.
    J. J. Milnor, J. Differential Geom., 2, 447–449 (1968).MathSciNetMATHGoogle Scholar
  10. 10.
    L. Shneyerson, Polynomial Growth in Semigroup Varieties, presented at “International Conference on Group Theory: Combinatorial, Geometric, and Dynamical Aspects of Infinite Groups”, Gaeta, Italy, June 1–6, 2003.Google Scholar
  11. 11.
    J. J. Tits, J. Algebra, 20, 250–270 (1972).CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    J. A. Wolf, J. Differential Geom., 2, 421–446 (1968).MATHGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • A. G. Erschler
    • 1
  1. 1.CNRS, Universite Lille 1, UFR de MathematiquesFrance

Personalised recommendations