Extremes

, Volume 20, Issue 1, pp 53–89 | Cite as

Detecting breaks in the dependence of multivariate extreme-value distributions

Article

Abstract

In environmental sciences, it is often of interest to assess whether the dependence between extreme measurements has changed during the observation period. The aim of this work is to propose a statistical test that is particularly sensitive to such changes. The resulting procedure is also extended to allow the detection of changes in the extreme-value dependence under the presence of known breaks in the marginal distributions. Simulations are carried out to study the finite-sample behavior of both versions of the proposed test. Illustrations on hydrological data sets conclude the work.

Keywords

Copula Hydrological applications Multivariate block maxima Pickands dependence function Resampling Sequential empirical processes 

AMS 2000 Subject Classifications

62G10 62H15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aue, A., Horváth, L.: Structural breaks in time series. J. Time Series Anal. 34(1), 1–16 (2013)MathSciNetCrossRefMATHGoogle Scholar
  2. Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of Extremes: Theory and Applications. Wiley Series in Probability and Statistics. Wiley, Chichester (2004)CrossRefMATHGoogle Scholar
  3. Bücher, A., Kojadinovic, I.: A dependent multiplier bootstrap for the sequential empirical copula process under strong mixing. Bernoulli 22(2), 927–968 (2016)MathSciNetCrossRefMATHGoogle Scholar
  4. Bücher, A., Segers, J.: Extreme value copula estimation based on block maxima of a multivariate stationary time series. Extremes 17(3), 495–528 (2014)MathSciNetCrossRefMATHGoogle Scholar
  5. Bücher, A., Kojadinovic, I., Rohmer, T., Segers, J.: Detecting changes in cross-sectional dependence in multivariate time series. J. Multivariate Anal. 132 (0), 111–128 (2014)MathSciNetCrossRefMATHGoogle Scholar
  6. Cooley, D., Nychka, D., Naveau, P.: Bayesian spatial modeling of extreme precipitation return levels. J. Amer. Stat. Assoc. 102(479), 824–840 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. Csörgő, M., Horváth, L.: Limit Theorems in Change-Point Analysis. Wiley Series in Probability and Statistics. Wiley, Chichester (1997)Google Scholar
  8. de Haan, L., Ferreira, A.: Extreme Value Theory: An introduction. Springer (2006)Google Scholar
  9. Dehling, H., Vogel, D., Wendler, M., Wied, D.: Testing for changes in the rank correlation of time series. arXiv:1203.4871 (2014)
  10. Dümbgen, L.: The asymptotic behavior of some nonparametric change-point estimators. Ann. Stat. 19(3), 1471–1495 (1991)MathSciNetCrossRefMATHGoogle Scholar
  11. Ferreira, M.: Nonparametric estimation of the tail dependence coefficient. REVSTAT – Stat. J. 11(1), 1–16 (2013)MathSciNetMATHGoogle Scholar
  12. Genest, C., Segers, J.: On the covariance of the asymptotic empirical copula process. J. Multivariate Anal. 101(8), 1837–1845 (2010)MathSciNetCrossRefMATHGoogle Scholar
  13. Genest, C., Ghoudi, K., Rivest, L.-P.: Discussion of “Understanding relationships using copulas”, by E. Frees and E. Valdez. North Amer. Actuar. J. 3, 143–149 (1998)CrossRefGoogle Scholar
  14. Genest, C., Kojadinovic, I., Nešlehová, J., Yan, J.: A goodness-of-fit test for bivariate extreme-value copulas. Bernoulli 17(1), 253–275 (2011)MathSciNetCrossRefMATHGoogle Scholar
  15. Gumbel, E.J.: Statistics of Extremes. Columbia University Press, New York (1958)MATHGoogle Scholar
  16. Hofert, M., Kojadinovic, I., Mächler, M., Yan, J.: Copula: Multivariate Dependence with Copulas. R package version 0.999-13 (2015)Google Scholar
  17. Hosking, J.R.M., Wallis, J.R.: Regional Frequency Analysis: An Approach Based on L-moments. Cambridge University Press (2005)Google Scholar
  18. Inoue, A.: Testing for distributional change in time series. Econom. Theory 17 (1), 156–187 (2001)MathSciNetCrossRefMATHGoogle Scholar
  19. Jaruškova, D., Rencová, M.: Analysis of annual maximal and minimal temperatures for some European cities by change point methods. Environmetrics 19, 221–233 (2008)MathSciNetCrossRefGoogle Scholar
  20. Katz, R., Brown, B.: Extreme events in a changing climate: Variability is more important than averages. Clim. Change 21(3), 289–302 (1992)CrossRefGoogle Scholar
  21. Khoudraji, A.: Contributions à l’étude des copules et à la modélisation des valeurs extrêmes bivariées. Ph. D. thesis, Université Laval, Québec, Canada (1995)Google Scholar
  22. Kojadinovic, I.: npcp: Some nonparametric tests for change-point detection in (multivariate) observations. R package version 0.1-6. (2015)Google Scholar
  23. Kojadinovic, I., Quessy, J.-F., Rohmer, T.: Testing the constancy of Spearman’s rho in multivariate time series. Annals of the Institute of Statistical Mathematics, in press (2015)Google Scholar
  24. Liebscher, E.: Construction of asymmetric multivariate copulas. J. Multivar. Anal. 99, 2234–2250 (2008)MathSciNetCrossRefMATHGoogle Scholar
  25. Marcon, G., Padoan, S.A., Naveau, P., Muliere, P., Segers, J.: Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials. ArXiv e-prints (2014)Google Scholar
  26. Mitkovȧ, V.B., Halmovȧ, D.: Joint modeling of flood peak discharges, volume and duration: A case study of the Danube River in Bratislava. J. Hydrol. Hydromech. 62(3), 186–196 (2014)Google Scholar
  27. Naveau, P., Guillou, A., Cooley, D., Diebolt, J.: Modelling pairwise dependence of maxima in space. Biometrika 96(1), 1–17 (2009)MathSciNetCrossRefMATHGoogle Scholar
  28. Nelsen, R.B.: An introduction to copulas. Springer Series in Statistics, 2nd edn. Springer, New York (2006)Google Scholar
  29. Pickands, J. III: Multivariate extreme value distributions. In: Proceedings of the 43rd Session of the International Statistical Institute, vol. 2 (Buenos Aires, 1981), vol. 49, pp. 859–878, 894–902. With a discussion (1981)Google Scholar
  30. Quessy, J.-F., Saïd, M., Favre, A.-C.: Multivariate Kendall’s tau for change-point detection in copulas. Can. J. Stat. 41, 65–82 (2013)MathSciNetCrossRefMATHGoogle Scholar
  31. R Core Team: R: A Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing (2015)Google Scholar
  32. Rémillard, B., Scaillet, O.: Testing for equality between two copulas. J. Multivariate Anal. 100(3), 377–386 (2009)MathSciNetCrossRefMATHGoogle Scholar
  33. Ressel, P.: Homogeneous distributions – And a spectral representation of classical mean values and stable tail dependence functions. J. Multivariate Analy. 117, 246–256 (2013)MathSciNetCrossRefMATHGoogle Scholar
  34. Scaillet, O.: A Kolmogorov-Smirnov type test for positive quadrant dependence. Can. J. Stat. 33(3), 415–427 (2005)MathSciNetCrossRefMATHGoogle Scholar
  35. Schulte, M., Schumann, A.: Downstream-directed performance assessment of reservoirs in multi-tributary catchments by application of multivariate statistics. Water Resour. Manag. 29(2), 419–430 (2015)CrossRefGoogle Scholar
  36. Segers, J.: Asymptotics of empirical copula processes under non-restrictive smoothness assumptions. Bernoulli 18(3), 764–782 (2012)MathSciNetCrossRefMATHGoogle Scholar
  37. Sklar, A.: Fonctions de rėpartition ȧ n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8, 229–231 (1959)MathSciNetMATHGoogle Scholar
  38. van der Vaart, A.W., Wellner, J.A.: Weak Convergence and Empirical Processes - Springer Series in Statistics. Springer, New York (1996)CrossRefMATHGoogle Scholar
  39. Wickham, H.: ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York (2009)CrossRefMATHGoogle Scholar
  40. Wilke, C.O.: cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. R package version 0.6.1 (2016)Google Scholar
  41. Yue, S., Ouarda, T., Bobe, B., Legendre, P., Bruneau, P.: The Gumbel mixed model for flood frequency analysis. J. Hydrol. 226(1–2), 88–100 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Axel Bücher
    • 1
  • Paul Kinsvater
    • 2
  • Ivan Kojadinovic
    • 3
  1. 1.Fakultät für MathematikRuhr-Universität BochumBochumGermany
  2. 2.Fakultät StatistikTechnische Universität DortmundDortmundGermany
  3. 3.Université de Pau et des Pays de l’AdourLaboratoire de mathématiques et applications, UMR CNRS 5142Pau CedexFrance

Personalised recommendations