Advertisement

Extremes

, Volume 19, Issue 3, pp 429–462 | Cite as

Tail fitting for truncated and non-truncated Pareto-type distributions

  • Jan Beirlant
  • Isabel Fraga Alves
  • Ivette Gomes
Article

Abstract

In extreme value analysis, natural upper bounds can appear that truncate the probability tail. At other instances ultimately at the largest data, deviations from a Pareto tail behaviour become apparent. This matter is especially important when extrapolation outside the sample is required. Given that in practice one does not always know whether the distribution is truncated or not, we consider estimators for extreme quantiles both under truncated and non-truncated Pareto-type distributions. We make use of the estimator of the tail index for the truncated Pareto distribution first proposed in Aban et al. (J. Amer. Statist. Assoc. 101(473), 270–277, 2006). We also propose a truncated Pareto QQ-plot and a formal test for truncation in order to help deciding between a truncated and a non-truncated case. In this way we enlarge the possibilities of extreme value modelling using Pareto tails, offering an alternative scenario by adding a truncation point T that is large with respect to the available data. In the mathematical modelling we hence let T at different speeds compared to the limiting fraction (k/n→0) of data used in the extreme value estimation. This work is motivated using practical examples from different fields, simulation results, and some asymptotic results.

Keywords

Pareto-type distributions Truncation Extreme quantiles Endpoint QQ-plots 

AMS 2000 Subject Classifications

62G32 62G05 62G10 62G20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aban, I.B., Meerschaert, M.M.: Generalized least squares estimators for the thickness of heavy tails. Journal of Statistical Planning and Inference 119, 341–352 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Aban, I. B., Meerschaert, M.M., Panorska, A.K.: Parameter estimation for the truncated pareto distribution. J. Amer. Statist. Assoc. 101(473), 270–277 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Beirlant, J., Joossens, E., Segers, J.: Second-order refined peaks-over-threshold modelling for heavy-tailed distribution. Journal of Statistical Planning and Inference 139, 2800–2815 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Beirlant, J., Vynckier, P., Teugels, J.: Tail index estimation, Pareto quantile plots and regression diagnostics. J. Amer. Statist. Assoc. 91, 1659–1667 (1996)MathSciNetzbMATHGoogle Scholar
  5. Beirlant, J., Goegebeur, Y., Teugels, J., Segers, J.: Statistics of Extremes: Theory and Applications. Wiley, UK (2004)CrossRefzbMATHGoogle Scholar
  6. Brilhante, M.F., Gomes, M.I., Dinis Pestana, D.: A simple generalisation of the Hill estimator. Comput. Stat. Data Anal. 57(1), 518–535 (2013)MathSciNetCrossRefGoogle Scholar
  7. Chakrabarty, A., Samorodnitsky, G.: Understanding heavy tails in a bounded world, or, is a truncated heavy tail heavy or not?. Stoch. Model. 28, 109–143 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Clark, D.R.: A note on the upper-truncated Pareto distribution In Proc. of the Enterprise Risk Management Symposium, April 22-24, Chicago IL (2013)Google Scholar
  9. Dekkers, A., Einmahl, J., de Haan, L.: A moment estimator for the index of an extreme-value distribution. Ann. Statist. 17, 1795–1832 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Gomes, M.I., Figueiredo, F., Neves, M.M.: Adaptive estimation of heavy right tails: the bootstrap methodology in action. Extremes 15(4), 463–489 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. de Haan, L., Ferreira, A.: Extreme Value Theory: an Introduction Springer Science and Business Media. LLC, New York (2006)CrossRefzbMATHGoogle Scholar
  12. Hill, B.M.: A simple general approach about the tail of a distribution. Ann. Stat. 3, 1163–1174 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Mason, D.M., Turova, T.S.: Weak Convergence of the Hill Estimator Process. In: Galambos, J., Lechner, J., Simiu, E. (eds.) Extreme Value Theory and Applications: Proceedings of the Conference on Extreme Value Theory and Applications, Gaithersburg, 1993, vol. 1. Kluwer, Dordrecht (1994)Google Scholar
  14. Nuyts, J.: Inference about the tail of a distribution: improvement on the Hill estimator. Int. J. Math. Math. Sci. 924013 (2010)Google Scholar
  15. Reed, W.J., McKelvey, K.S.: Power-law behaviour and parametric models for the size-distributions of forest fires. Ecol. Model. 150, 239–254 (2002)CrossRefGoogle Scholar
  16. Seneta, E.: Regularly Varying Functions. Lecture Notes in Math 508. Springer-Verlag, Berlin (1976)CrossRefGoogle Scholar
  17. Weissman, I.: Estimation of parameters and large quantiles based on the k largest observations. J. Am. Stat. Assoc. 73, 812–815 (1978)MathSciNetzbMATHGoogle Scholar
  18. Willems, P.: A time-series tool to support the multi-criteria performance evaluation of rainfall-runoff models. Environ. Model. Softw. 24, 311–321 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jan Beirlant
    • 1
    • 2
  • Isabel Fraga Alves
    • 3
  • Ivette Gomes
    • 3
  1. 1.Department of MathematicsKU LeuvenLeuvenBelgium
  2. 2.Department of Mathematical Statistics and Actuarial ScienceUniversity of the Free StateBloemfonteinSouth Africa
  3. 3.Department of Statistics and Operations Research and CEAULUniversity of LisbonLisboaPortugal

Personalised recommendations