, Volume 19, Issue 1, pp 25–40 | Cite as

A limiting distribution for maxima of discrete stationary triangular arrays with an application to risk due to avalanches

  • Pascal Sielenou Dkengne
  • Nicolas Eckert
  • Philippe Naveau


In this paper, we generalize earlier work dealing with maxima of discrete random variables. We show that row-wise stationary block maxima of a triangular array of integer valued random variables converge to a Gumbel extreme value distribution if row-wise variances grow sufficiently fast as the row-size increases. As a by-product, we derive analytical expressions of normalising constants for most classical unbounded discrete distributions. A brief simulation illustrates our theoretical result. Also, we highlight its usefulness in practice with a real risk assessment problem, namely the evaluation of extreme avalanche occurrence numbers in the French Alps.


Extreme values Triangular arrays Stationary processes Discrete random variables Snow avalanche occurrence numbers 

AMS 2000 Subject Classifications

60G70 60G10 60F10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, C.W.: Local limit theorems for the maxima of discrete random variables. Math. Proc. Camb. Philos. Soc. 88, 161–165 (1980)zbMATHCrossRefGoogle Scholar
  2. Anderson, C.W., Coles, S.G., Hüsler, J.: Maxima of poisson-like variables and related triangular arrays. Ann. Appl. Probab. 7(4), 953–971 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  3. Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of extremes: Theory and applications. Wiley series in probability and statistics (2004)Google Scholar
  4. Castebrunet, H., Eckert, N., Giraud, G.: Snow and weather climatic control on snow avalanche occurrence fluctuations over 50 yr in the french alps. Clim. Past 8 (2012)Google Scholar
  5. Coles, S.G.: An introduction to statistical modeling of extreme values. Springer series in statistics (2001)Google Scholar
  6. Consul, P.C., Famoye, F.: Lagrangian probability distributions. Birkhäuser, Boston (2006)zbMATHGoogle Scholar
  7. De Haan, L., Ferreira, A.: Extreme value theory: An introduction. Springer series in operations research and financial engineering (2006)Google Scholar
  8. Eckert, N., Coleou, C., Castebrunet, H., Deschatres, M., Giraud, G., Gaume, J.: Cross-comparison of meteorological and avalanche data for characterising avalanche cycles: The example of december 2008 in the eastern part of the french alps. Cold Reg. Sci. Technol. 64, 119–136 (2010b)CrossRefGoogle Scholar
  9. Eckert, N., Parent, E., Kies, R., Baya, H.: A spatio-temporal modelling framework for assessing the fluctuations of avalanche occurrence resulting from climate change: application to 60 years of data in the northern french alps. Clim. Chang. 101, 515–553 (2010a)CrossRefGoogle Scholar
  10. Eckert, N., Parent, E., Richard, D.: Revisiting statistical topographical methods for avalanche predetermination: Bayesian modelling for runout distance predictive distribution. Cold Region Sci. Technol. 49, 88–107 (2007)CrossRefGoogle Scholar
  11. Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling extremal events for insurance and finance. Springer-Verlag, Berlin (1997)zbMATHCrossRefGoogle Scholar
  12. Falk, M., Hüsler, J., Reiss, R.D.: Laws of small numbers: Extremes and rare events, 3 edn. Basel, Birkhäuser Verlag (2010)Google Scholar
  13. Gaume, J., Eckert, N., Chambon, G., Naaim, M., Bel, L.: Mapping extreme snowfalls in the french alps using max-stable processes. Water Resour. Res. 49(2), 1079–1098 (2013)CrossRefGoogle Scholar
  14. Katz, R.W., Parlange, M., Naveau, P.: Statistics of extremes in hydrology. Adv. Water Resour. 25(8–12), 1287–1304 (2002)CrossRefGoogle Scholar
  15. Kim, H., Park, Y.: A non-stationary integer-valued autoregressive model. Stat. Pap. 49, 485–502 (2008)zbMATHCrossRefGoogle Scholar
  16. Leadbetter, M.R., Lindgren, G., Rootzén, H.: Extremes and related properties of random sequences and processes. Springer-Verlag, New York (1983)zbMATHCrossRefGoogle Scholar
  17. Rousselot, M., Durand, Y., Giraud, G., Merindol, L., Daniel, L.: Analysis and forecast of extreme new-snow avalanches: a numerical study of the avalanche cycles of february 1999 in france. J. Glaciol. 56(199), 758–770 (2010)CrossRefGoogle Scholar
  18. Saulis, L., Statulevicius, V.: Limit Theorems for Large Deviations. Kluwer Academic Dordrecht, Boston (1991)zbMATHCrossRefGoogle Scholar
  19. Schweizer, J., Mitterer, C., Stoffel, L.: On forecasting large and infrequent snow avalanches. Cold Regions Scie. Technol. 59(2–3), 234–241 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Pascal Sielenou Dkengne
    • 1
  • Nicolas Eckert
    • 1
  • Philippe Naveau
    • 2
  1. 1.IRSTEA, UR ETGR Erosion torrentielle neige et avalanchesUniversité de Grenoble Alpes, IRSTEA, 2 rue de la PapeterieGrenobleFrance
  2. 2.Laboratoire des Sciences du Climat et l’Environnement (LSCE) CNRSGif-sur-YvetteFrance

Personalised recommendations