Bayesian model averaging for multivariate extremes

Abstract

The main framework of multivariate extreme value theory is well-known in terms of probability, but inference and model choice remain an active research field. Theoretically, an angular measure on the positive quadrant of the unit sphere can describe the dependence among very high values, but no parametric form can entirely capture it. The practitioner often makes an assertive choice and arbitrarily fits a specific parametric angular measure on the data. Another statistician could come up with another model and a completely different estimate. This leads to the problem of how to merge the two different fitted angular measures. One natural way around this issue is to weigh them according to the marginal model likelihoods. This strategy, the so-called Bayesian Model Averaging (BMA), has been extensively studied in various context, but (to our knowledge) it has never been adapted to angular measures. The main goal of this article is to determine if the BMA approach can offer an added value when analyzing extreme values.

This is a preview of subscription content, log in to check access.

References

  1. Apputhurai, P., Stephenson, A.: Accounting for uncertainty in extremal dependence modeling using bayesian model averaging techniques. J. Stat. Plan. Inference 141(5), 1800–1807 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  2. Ballani, F., Schlather, M.: A construction principle for multivariate extreme value distributions. Biometrika 98(3) (2011)

  3. Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of Extremes: Theory and Applications.Wiley, New York (2004)

    Google Scholar 

  4. Berk, R.: Limiting behavior of posterior distributions when the model is incorrect. Ann. Math. Stat. 37(1), 51–58 (1966)

    MathSciNet  Article  MATH  Google Scholar 

  5. Boldi, M.O., Davison, A.C.: A mixture model for multivariate extremes. J. R. Stat. Soc., Ser. B Stat. Methodol. 69(2), 217–229 (2007). doi:10.1111/j.1467-9868.2007.00585.x

    MathSciNet  Article  MATH  Google Scholar 

  6. Coles, S., Tawn, J.: Modeling extreme multivariate events. J. R. Stat. Soc. B 53, 377–392 (1991)

    MathSciNet  MATH  Google Scholar 

  7. Cooley, D., Davis, R., Naveau, P.: The pairwise beta distribution: A flexible parametric multivariate model for extremes. J. Multivar. Anal. 101(9), 2103–2117 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  8. Cowles, M., Carlin, B.: Markov chain monte carlo convergence diagnostics: a comparative review. J. Am. Stat. Assoc., 883–904 (1996)

  9. Einmahl, J., Segers, J.: Maximum empirical likelihood estimation of the spectral measure of an extreme-value distribution. Ann. Stat. 37(5B), 2953–2989 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  10. Einmahl, J., de Haan, L., Piterbarg, V.: Nonparametric estimation of the spectral measure of an extreme value distribution. Ann. Stat. 29(5), 1401–1423 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  11. Geweke, J.: Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In: In Bayesian Statistics, pp. 169–193. University Press (1992)

  12. Gneiting, T., Raftery, A.: Strictly proper scoring rules, prediction, and estimation. J. Am. Stat. Assoc. 102(477), 359–378 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  13. Gudendorf, G., Segers, J.: Nonparametric estimation of an extreme-value copula in arbitrary dimensions. J. Multivar. Anal. 102, 37–47 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  14. Guillotte, S., Perron, F., Segers, J.: Non-parametric bayesian inference on bivariate extremes. J. R. Stat. Soc., Ser. B Stat. Methodol. 73, 377–406 (2011)

    MathSciNet  Article  Google Scholar 

  15. Gumbel, E.: Distributions des valeurs extrˆemes en plusieurs dimensions. Publ. Inst. Stat. Univ. Paris 9, 171–173 (1960)

    MathSciNet  MATH  Google Scholar 

  16. de Haan, L.: Extreme Value Theory, an Introduction, Ferreira, A. Springer Series in Operations Research and Financial Engineering (2006)

  17. Heffernan, J., Tawn, J.: A conditional approach for multivariate extreme values (with discussion). J. R. Stat. Soc., Ser. B Stat. Methodol. 66(3), 497–546 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  18. Heidelberger, P., Welch, P.D.: A spectral method for confidence interval generation and run length control in simulations. Commun ACM 24, 233–245 (1981). doi:10.1145/358598.358630

    MathSciNet  Article  Google Scholar 

  19. Hoeting, J., Madigan, D., Raftery, A., Volinsky, C.: Bayesian model averaging: A tutorial. Stat. Sci. 14(4), 382–401 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  20. Kass, R., Raftery, A.: Bayes factors. J. Am. Stat. Assoc. 90(430), 773–795 (1995)

    Article  MATH  Google Scholar 

  21. Kass, R., Tierney, L., Kadane, J.: The validity of posterior expansions based on Laplace’s method. Bayesian and Likelihood methods in Statistics and Econometrics 7, 473–488 (1990)

    Google Scholar 

  22. Kleijn, B., van der, V.rt, A.: Misspecification in infinite-dimensional bayesian statistics. Ann. Stat. 34(2), 837–877 (2006)

    Article  MATH  Google Scholar 

  23. Ledford, A., Tawn, J.: Statistics for near independence in multivariate extreme values. Biometrika 83(1), 169–187 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  24. Madigan, D., Raftery, A.: Model selection and accounting for model uncertainty in graphical models using occam’s window. J. Am. Stat. Assoc. 89(428), 1535–1546 (1994)

    Article  MATH  Google Scholar 

  25. Raftery, A., Gneiting, T., Balabdaoui, F., Polakowski, M.: Using bayesian model averaging to calibrate forecast ensembles. Mon. Weather Rev. 133(5), 1155–1174 (2005)

    Article  Google Scholar 

  26. Ramos, A., Ledford, A.: A. new class of models for bivariate joint tails. J. R. Stat. Soc., Ser. B Stat. Methodol. 71(1), 219–241 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  27. Resnick, S.: Extreme Values, Regular Variation, and Point Processes, Volume 4 of Applied Probability. A Series of the Applied Probability Trust. Springer-Verlag, New York (1987)

    Google Scholar 

  28. Resnick, S., Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer Series in Operations Research and Financial Engineering (2007)

  29. Robert, C.: The Bayesian Choice: from Decision-theoretic Foundations to Computational Implementation. Springer Verlag, New York (2007)

    Google Scholar 

  30. Stephenson, A.: Simulating multivariate extreme value distributions of logistic type. Extremes 6(1), 49–59 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  31. Tawn, J.: Modelling multivariate extreme value distributions. Biometrika 77(2), 245 (1990)

    Article  MATH  Google Scholar 

  32. van der Vaart, A.: Asymptotic Statistics (Cambridge Series in Statistical and Probabilistic Mathematics). Cambridge University Press, Cambridge, MA (2000)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anne Sabourin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sabourin, A., Naveau, P. & Fougères, A. Bayesian model averaging for multivariate extremes. Extremes 16, 325–350 (2013). https://doi.org/10.1007/s10687-012-0163-0

Download citation

Keywords

  • Bayesian model averaging
  • Multivariate extremes
  • Parametric modelling
  • Spectral measure

AMS 2000 Subject Classifications

  • 62F07
  • 62F15
  • 62H20
  • 62H05
  • 62P12