Extremes

, Volume 16, Issue 3, pp 303–324

Jump tail dependence in Lévy copula models

Article

Abstract

This paper investigates the dependence of extreme jumps in multivariate Lévy processes. We introduce a measure called jump tail dependence, defined as the probability of observing a large jump in one component of a process given a concurrent large jump in another component. We show that this measure is determined by the Lévy copula alone and that it is independent of marginal Lévy processes. We derive a consistent nonparametric estimator for jump tail dependence and establish its asymptotic distribution. Regarding the economic relevance of the measure, a simulation study illustrates that jump tail dependence has a substantial impact on financial portfolio distributions and optimal portfolio weights.

Keywords

Multivariate Lévy processes Dependence of jumps Nonparametric estimation Strong consistency High frequency financial data Portfolios 

AMS 2000 Subject Classifications

60G51 62G32 91G70 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almendral, A., Oosterlee, C.W.: On american options under the variance gamma process. Appl. Math. Finance 14(2), 131–152 (2007)MathSciNetCrossRefMATHGoogle Scholar
  2. Barndorff-Nielsen, O.E., Shephard, N.: Financial Volatility in Continuous Time. Cambridge University Press, Cambridge (2013, forthcoming)Google Scholar
  3. Basawa, I.V., Brockwell, P.J.: Non-parametric estimation for non-decreasing levy processes. J. R. Stat. Soc. Ser. B (Method.) 44(2), 262–269 (1982)MathSciNetMATHGoogle Scholar
  4. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman and Hall, Boca Raton, FL (2004)MATHGoogle Scholar
  5. Embrechts, P., Lindskog, F., McNeil, A.: Handbook of heavy tailed distibutions in finance, chap. Modelling Dependence with Copulas and Applications to Risk Management, pp. 329–384. Elsevier (2003)Google Scholar
  6. Esmaeili, H., Klüppelberg, C.: Parameter estimation of a bivariate compound poisson process. Insur. Math. Econ. 2(47), 224–233 (2010)CrossRefGoogle Scholar
  7. Esmaeili, H., Klüppelberg, C.: Parametric estimation of a bivariate stable lévy process. J. Multivar. Anal. 102(5), 918–930 (2011)CrossRefMATHGoogle Scholar
  8. Esmaeili, H., Klüppelberg, C.: Two-step estimation of a multivariate Lévy process. (2012, preprint)Google Scholar
  9. Fermanian, J.D., Radulovic, D., Wegkamp, M.: Weak convergence of empirical copula processes. Bernoulli 10(5), 847–860 (2004)MathSciNetCrossRefMATHGoogle Scholar
  10. Figueroa-López, J.E., Houdré, C.: Risk bounds for the non-parametric estimation of lévy processes. IMS Lect. Notes 51, 96–116 (2006)Google Scholar
  11. Genest, C., Ghoudi, K., Rivest, L.P.: A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82(3), 543–552 (1995)MathSciNetCrossRefMATHGoogle Scholar
  12. Joe, H.: Multivariate Models and Dependence Concepts. Chapman & Hall, London (1997)CrossRefMATHGoogle Scholar
  13. Kallenberg, O.: Foundation of Modern Probability. Springer (2002)Google Scholar
  14. Kallsen, J., Tankov, P.: Characterization of dependence of multidimensional Lévy processes using Lévy copulas. J. Multivar. Anal. 97, 1551–1572 (2006)MathSciNetCrossRefMATHGoogle Scholar
  15. Madan, D.B., Carr, P., Chang, E.: The variance gamma process and option pricing. Eur. Financ. Rev. 2, 79–105 (1998)CrossRefMATHGoogle Scholar
  16. Madan, D.B., Seneta, E.: The variance gamma (v.g.) model for share market returns. J. Bus. 63(4), 511–524 (1990)CrossRefGoogle Scholar
  17. Malevergne, Y., Sornette, D.: How to account for extreme co-movements between individual stocks and the market. J. Risk 6(3), 71–116 (2004)MathSciNetGoogle Scholar
  18. Markowitz, H.: Portfolio selection. J. Financ. 7(1), 77–91 (1952)Google Scholar
  19. Nelsen, R.: An Introduction to Copulas, 2nd edn. Springer, New York (2006)MATHGoogle Scholar
  20. Nishiyama, Y.: Nonparametric estimation and testing time-homogeneity for processes with independent increments. Stoch. Process. their Appl. 118(6), 1043–1055 (2008)MathSciNetCrossRefMATHGoogle Scholar
  21. Poon, S.H., Rockinger, M., Tawn, J.: Extreme value dependence in financial markets: diagnostics, models, and financial implications. Rev. Financ. Stud. 17, 581–610 (2004)CrossRefGoogle Scholar
  22. Rosinski, J.: Lévy Processes – Theory and Applications, chap. Series Representation of Lévy Processes from the Perspective of Point Processes. Birkhäuser, Boston (2001)Google Scholar
  23. Rüschendorf, L., Woerner, J.H.C.: Expansion of transition distributions of Lévy processes in small time. Bernoulli 8, 81–96 (2002)MathSciNetMATHGoogle Scholar
  24. Schmid, F., Schmidt, R.: Multivariate conditional versions of spearman’s rho and related measures of tail dependence. J. Multivar. Anal. 98(6), 1123–1140 (2007)MathSciNetCrossRefMATHGoogle Scholar
  25. Schmidt, R., Stadtmüller, U.: Nonparametric estimation of tail dependence. Scand. J. Statist. 33, 307–355 (2006)MathSciNetCrossRefMATHGoogle Scholar
  26. Sibuya, M.: Bivariate extreme statistics. Ann. Inst. Statist. Math. 11, 195–210 (1960)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Economic and Social StatisticsUniversity of CologneKölnGermany

Personalised recommendations