Abstract
When simultaneously monitoring two possibly dependent, positive risks one is often interested in quantile regions with very small probability p. These extreme quantile regions contain hardly any or no data and therefore statistical inference is difficult. In particular when we want to protect ourselves against a calamity that has not yet occurred, we need to deal with probabilities p < 1/n, with n the sample size. We consider quantile regions of the form {(x, y) ∈ (0, ∞ )2: f(x, y) ≤ β}, where f, the joint density, is decreasing in both coordinates. Such a region has the property that it consists of the less likely points and hence that its complement is as small as possible. Using extreme value theory, we construct a natural, semiparametric estimator of such a quantile region and prove a refined form of consistency. A detailed simulation study shows the very good statistical performance of the estimated quantile regions. We also apply the method to find extreme risk regions for bivariate insurance claims.
This is a preview of subscription content, log in to check access.
References
Beirlant, J., Vynckier, P., Teugels, J.: Tail index estimation, Pareto quantile plots, and regression diagnostics. J. Am. Stat. Assoc. 91, 1659–1667 (1996)
Cai, J.-J., Einmahl, J.H.J., de Haan, L.: Estimation of extreme risk regions under multivariate regular variation. Ann. Stat. 39, 1803–1826 (2011)
Danielsson, J., de Haan, L., Peng, L., de Vries, C.G.: Using a bootstrap method to choose the sample fraction in tail index estimation. J. Multivar. Anal. 76, 226–248 (2001)
de Haan, L., Ferreira, A.: Extreme Value Theory: An Introduction. Springer, New York (2006)
de Haan, L., Huang, X.: Large quantile estimation in a multivariate setting. J. Multivar. Anal. 53, 247–263 (1995)
de Haan, L., Resnick, S.I.: Limit theory for multivariate sample extremes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 40, 317–337 (1977)
Dekkers, A.L.M., Einmahl, J.H.J., de Haan, L.: A moment estimator for the index of an extreme-value distribution. Ann. Stat. 17, 1833–1855 (1989)
Einmahl, J.H.J., Segers, J.: Maximum empirical likelihood estimation of the spectral measure of an extreme value distribution. Ann. Stat. 37, 2953–2989 (2009)
Einmahl, J.H.J., de Haan, L., Piterbarg, V.I.: Nonparametric estimation of the spectral measure of an extreme value distribution. Ann. Stat. 29, 1401–1423 (2001)
Einmahl, J.H.J., Li, J., Liu, R.Y.: Thresholding events of extreme in simultaneous monitoring of multiple risks. J. Am. Stat. Assoc. 104, 982–992 (2009)
Frees, E.W., Valdez, E.A.: Understanding relationships using copulas. N. Am. Actuar. J. 2, 1–25 (1998)
Goldie, C.M., Smith, R.L.: Slow variation with remainder: theory and applications. Q. J. Math. 38, 45–71 (1987)
Hill, B.M.: A simple general approach to inference about the tail of a distribution. Ann. Stat. 3, 1163–1174 (1975)
Joe, H., Smith, R., Weissman, I.: Bivariate threshold methods for extremes. J. R. Stat. Soc. Ser. B 54, 171–183 (1992)
Müller, D.W., Sawitzki, G.: Excess mass estimates and tests of multimodality. J. Am. Stat. Assoc. 86, 738–746 (1991)
Polonik, W.: Measuring mass concentrations and estimating density contour clusters—an excess mass approach. Ann. Stat. 23, 855–881 (1995)
Smith, R.L.: Estimating tails of probability distributions. Ann. Stat. 15, 1174–1207 (1987)
Tsybakov, A.B.: On nonparametric estimation of density level sets. Ann. Stat. 25, 948–969 (1997)
Author information
Affiliations
Corresponding author
Additional information
L. de Haan research is partially supported by ENES-project PTDC/MAT/112770/2009.
A. Krajina research is supported by Deutsches Forschungsgemeinschaft (DFG) grant SNF FOR 916.
Rights and permissions
About this article
Cite this article
Einmahl, J.H.J., de Haan, L. & Krajina, A. Estimating extreme bivariate quantile regions. Extremes 16, 121–145 (2013). https://doi.org/10.1007/s10687-012-0156-z
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords
- Density contour
- Extreme value
- Level set
- Multivariate quantile
- Rare event
- Semiparametric estimation
- Tail dependence
AMS 2000 Subject Classifications
- 62G32
- 62G05
- 62G20
- 60G70