Estimating extreme bivariate quantile regions

Abstract

When simultaneously monitoring two possibly dependent, positive risks one is often interested in quantile regions with very small probability p. These extreme quantile regions contain hardly any or no data and therefore statistical inference is difficult. In particular when we want to protect ourselves against a calamity that has not yet occurred, we need to deal with probabilities p < 1/n, with n the sample size. We consider quantile regions of the form {(x, y) ∈ (0, ∞ )2: f(x, y) ≤ β}, where f, the joint density, is decreasing in both coordinates. Such a region has the property that it consists of the less likely points and hence that its complement is as small as possible. Using extreme value theory, we construct a natural, semiparametric estimator of such a quantile region and prove a refined form of consistency. A detailed simulation study shows the very good statistical performance of the estimated quantile regions. We also apply the method to find extreme risk regions for bivariate insurance claims.

This is a preview of subscription content, log in to check access.

References

  1. Beirlant, J., Vynckier, P., Teugels, J.: Tail index estimation, Pareto quantile plots, and regression diagnostics. J. Am. Stat. Assoc. 91, 1659–1667 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Cai, J.-J., Einmahl, J.H.J., de Haan, L.: Estimation of extreme risk regions under multivariate regular variation. Ann. Stat. 39, 1803–1826 (2011)

    MATH  Article  Google Scholar 

  3. Danielsson, J., de Haan, L., Peng, L., de Vries, C.G.: Using a bootstrap method to choose the sample fraction in tail index estimation. J. Multivar. Anal. 76, 226–248 (2001)

    MATH  Article  Google Scholar 

  4. de Haan, L., Ferreira, A.: Extreme Value Theory: An Introduction. Springer, New York (2006)

    Google Scholar 

  5. de Haan, L., Huang, X.: Large quantile estimation in a multivariate setting. J. Multivar. Anal. 53, 247–263 (1995)

    MATH  Article  Google Scholar 

  6. de Haan, L., Resnick, S.I.: Limit theory for multivariate sample extremes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 40, 317–337 (1977)

    MATH  Article  Google Scholar 

  7. Dekkers, A.L.M., Einmahl, J.H.J., de Haan, L.: A moment estimator for the index of an extreme-value distribution. Ann. Stat. 17, 1833–1855 (1989)

    MATH  Article  Google Scholar 

  8. Einmahl, J.H.J., Segers, J.: Maximum empirical likelihood estimation of the spectral measure of an extreme value distribution. Ann. Stat. 37, 2953–2989 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  9. Einmahl, J.H.J., de Haan, L., Piterbarg, V.I.: Nonparametric estimation of the spectral measure of an extreme value distribution. Ann. Stat. 29, 1401–1423 (2001)

    MATH  Article  Google Scholar 

  10. Einmahl, J.H.J., Li, J., Liu, R.Y.: Thresholding events of extreme in simultaneous monitoring of multiple risks. J. Am. Stat. Assoc. 104, 982–992 (2009)

    MathSciNet  Article  Google Scholar 

  11. Frees, E.W., Valdez, E.A.: Understanding relationships using copulas. N. Am. Actuar. J. 2, 1–25 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  12. Goldie, C.M., Smith, R.L.: Slow variation with remainder: theory and applications. Q. J. Math. 38, 45–71 (1987)

    MathSciNet  MATH  Article  Google Scholar 

  13. Hill, B.M.: A simple general approach to inference about the tail of a distribution. Ann. Stat. 3, 1163–1174 (1975)

    MATH  Article  Google Scholar 

  14. Joe, H., Smith, R., Weissman, I.: Bivariate threshold methods for extremes. J. R. Stat. Soc. Ser. B 54, 171–183 (1992)

    MathSciNet  MATH  Google Scholar 

  15. Müller, D.W., Sawitzki, G.: Excess mass estimates and tests of multimodality. J. Am. Stat. Assoc. 86, 738–746 (1991)

    MATH  Google Scholar 

  16. Polonik, W.: Measuring mass concentrations and estimating density contour clusters—an excess mass approach. Ann. Stat. 23, 855–881 (1995)

    MathSciNet  MATH  Article  Google Scholar 

  17. Smith, R.L.: Estimating tails of probability distributions. Ann. Stat. 15, 1174–1207 (1987)

    MATH  Article  Google Scholar 

  18. Tsybakov, A.B.: On nonparametric estimation of density level sets. Ann. Stat. 25, 948–969 (1997)

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to John H. J. Einmahl.

Additional information

L. de Haan research is partially supported by ENES-project PTDC/MAT/112770/2009.

A. Krajina research is supported by Deutsches Forschungsgemeinschaft (DFG) grant SNF FOR 916.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Einmahl, J.H.J., de Haan, L. & Krajina, A. Estimating extreme bivariate quantile regions. Extremes 16, 121–145 (2013). https://doi.org/10.1007/s10687-012-0156-z

Download citation

Keywords

  • Density contour
  • Extreme value
  • Level set
  • Multivariate quantile
  • Rare event
  • Semiparametric estimation
  • Tail dependence

AMS 2000 Subject Classifications

  • 62G32
  • 62G05
  • 62G20
  • 60G70