Extremes of independent Gaussian processes

Abstract

For every n ∈ ℕ, let X 1n ,..., X nn be independent copies of a zero-mean Gaussian process X n  = {X n (t), t ∈ T}. We describe all processes which can be obtained as limits, as n→ ∞, of the process a n (M n  − b n ), where M n (t) =  maxi = 1,...,n X in (t), and a n , b n are normalizing constants. We also provide an analogous characterization for the limits of the process a n L n , where L n (t) =  min i = 1,...,n |X in (t)|.

References

  1. Adler, R.J., Taylor, J.E.: Random fields and geometry. In: Springer Monographs in Mathematics. Springer, New York (2007)

    Google Scholar 

  2. Albin, J.M.P.: Minima of H-valued Gaussian processes. Ann. Probab. 24(2), 788–824 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  3. Berg, C., Christensen, J.P.R., Ressel, P.: Harmonic analysis on semigroups. Theory of Positive Definite and Related Functions. In: Graduate Texts in Mathematics, vol. 100. Springer, New York (1984)

    Google Scholar 

  4. Billingsley, P.: Convergence of probability measures, 2nd edn. In: Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York (1999)

    Google Scholar 

  5. Brown, B.M., Resnick, S.I.: Extreme values of independent stochastic processes. J. Appl. Probab. 14, 732–739 (1977)

    MathSciNet  MATH  Article  Google Scholar 

  6. de Haan, L.: A spectral representation for max-stable processes. Ann. Probab. 12, 1194–1204 (1984)

    MathSciNet  MATH  Article  Google Scholar 

  7. de Haan, L., Lin, T.: On convergence toward an extreme value distribution in C[0,1]. Ann. Probab. 29(1), 467–483 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  8. Falk, M., Hüsler, J., Reiss, R.-D.: Laws of small numbers: extremes and rare events. In: DMV Seminar, vol. 23. Birkhäuser, Basel (1994)

    Google Scholar 

  9. Hüsler, J., Reiss, R.-D.: Maxima of normal random vectors: between independence and complete dependence. Stat. Probab. Lett. 7(4), 283–286 (1989)

    MATH  Article  Google Scholar 

  10. Istas, J.: Spherical and hyperbolic fractional Brownian motion. Electron. Commun. Probab. 10, 254–262 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Kabluchko, Z., Schlather, M., de Haan, L.: Stationary max-stable fields associated to negative definite functions. Ann. Probab. 37(5), 2042–2065 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  12. Leadbetter, M.R., Lindgren, G., Rootzén, H.: Extremes and related properties of random sequences and processes. In: Springer Series in Statistics. Springer, New York (1983)

    Google Scholar 

  13. Penrose, M.: The minimum of a large number of Bessel processes. J. Lond. Math. Soc. II. 38(3), 566–576 (1988)

    MathSciNet  MATH  Google Scholar 

  14. Penrose, M.: Minima of independent Bessel processes and of distances between Brownian particles. J. Lond. Math. Soc. II. 43(2), 355–366 (1991)

    MathSciNet  MATH  Article  Google Scholar 

  15. Pickands, J.: Upcrossing probabilities for stationary Gaussian processes. Trans. Am. Math. Soc. 145, 51–73 (1969)

    MathSciNet  MATH  Article  Google Scholar 

  16. Piterbarg, V.I.: Asymptotic methods in the theory of Gaussian processes and fields. In: Translations of Mathematical Monographs, vol. 148. American Mathematical Society, Providence (1996)

    Google Scholar 

  17. Resnick, S.I.: Extreme values, regular variation, and point processes. In: Applied Probability, vol. 4. Springer, New York (1987)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zakhar Kabluchko.

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Kabluchko, Z. Extremes of independent Gaussian processes. Extremes 14, 285–310 (2011). https://doi.org/10.1007/s10687-010-0110-x

Download citation

Keywords

  • Extremes
  • Gaussian processes
  • Max-stable processes
  • Hüsler–Reiss distributions

AMS 2000 Subject Classifications

  • Primary—60G70; Secondary—60G15