Advertisement

Extremes

, Volume 12, Issue 2, pp 129–148 | Cite as

Extreme value properties of multivariate t copulas

  • Aristidis K. NikoloulopoulosEmail author
  • Harry Joe
  • Haijun Li
Article

Abstract

The extremal dependence behavior of t copulas is examined and their extreme value limiting copulas, called the t-EV copulas, are derived explicitly using tail dependence functions. As two special cases, the Hüsler–Reiss and the Marshall–Olkin distributions emerge as limits of the t-EV copula as the degrees of freedom go to infinity and zero respectively. The t copula and its extremal variants attain a wide range in the set of bivariate tail dependence parameters.

Keywords

Tail dependence function Extreme value t Copula 

AMS 2000 Subject Classifications

62H20 91B30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Demarta, S., McNeil, A.J.: The t copula and related copulas. Int. Stat. Rev. 73, 111–129 (2005)zbMATHGoogle Scholar
  2. Embrechts, P., McNeil, A.J., Straumann, D.: Correlation and dependency in risk management: properties and pitfalls. In: Dempster M. (ed.) Risk Management: Value at Risk and Beyond, pp. 176–223. Cambridge University Press, Cambridge (2002)Google Scholar
  3. Falk, M., Hüsler, J., Reiss, R.-D.: Laws of Small Numbers: Extremes and Rare Events. DMV Seminar 23, 2nd edn. Birkhäuser, Basel (2004)Google Scholar
  4. Genz, A., Bretz, F.: Methods for the computation of multivariate t-probabilities. J. Comput. Graph. Stat. 11, 950–971 (2002)CrossRefMathSciNetGoogle Scholar
  5. Hashorva, E.: On the multivariate Hüsler–Reiss distribution attracting the maxima of elliptical triangular arrays. Stat. Probab. Lett. 76(18), 2027–2035 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  6. Hüsler, J. Reiss, R.-D.: Maxima of normal random vectors: between independence and complete dependence. Stat. Probab. Lett. 7(4), 283–286 (1989)zbMATHCrossRefGoogle Scholar
  7. Joe, H.: Multivariate Models and Dependence Concepts. Chapman & Hall, London (1997)zbMATHGoogle Scholar
  8. Kotz, S., Nadarajah, S.: Multivariate t Distributions and Their Applications. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  9. Kurowicka, D., Cooke, R.: Uncertainty Analysis with High Dimensional Dependence Modelling. Wiley, Chichester (2006)zbMATHCrossRefGoogle Scholar
  10. Li, H.: Tail dependence comparison of survival Marshall–Olkin copulas. Methodol. Comput. Appl. Probab. 10(1), 39–54 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  11. Marshall, A., Olkin, I.: A generalized bivariate exponential distribution. J. Appl. Probab. 4, 291–302 (1967a)zbMATHCrossRefMathSciNetGoogle Scholar
  12. Marshall, A., Olkin, I.: A multivariate exponential distribution. J. Am. Stat. Assoc. 62, 30–44 (1967b)zbMATHCrossRefMathSciNetGoogle Scholar
  13. McNeil, A.J., Frey, R., Embrechts, P.: Quantitative Risk Management: Concepts, Techniques, and Tools. Princeton University Press, Princeton (2005)zbMATHGoogle Scholar
  14. Mikosch, T.: Copulas: Tales and facts. Extremes 9, 3–20 (2006)CrossRefMathSciNetGoogle Scholar
  15. Sibuya, M.: Bivariate extreme statistics. Ann. Inst. Stat. Math. 11, 195–210 (1960)zbMATHCrossRefMathSciNetGoogle Scholar
  16. Wilson, E.B.: Advanced Calculus. Ginn and Company, Boston (1912)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Aristidis K. Nikoloulopoulos
    • 1
    Email author
  • Harry Joe
    • 1
  • Haijun Li
    • 2
  1. 1.Department of StatisticsUniversity of British ColumbiaVancouverCanada
  2. 2.Department of MathematicsWashington State UniversityPullmanUSA

Personalised recommendations