Extreme value properties of multivariate t copulas

Abstract

The extremal dependence behavior of t copulas is examined and their extreme value limiting copulas, called the t-EV copulas, are derived explicitly using tail dependence functions. As two special cases, the Hüsler–Reiss and the Marshall–Olkin distributions emerge as limits of the t-EV copula as the degrees of freedom go to infinity and zero respectively. The t copula and its extremal variants attain a wide range in the set of bivariate tail dependence parameters.

This is a preview of subscription content, log in to check access.

References

  1. Demarta, S., McNeil, A.J.: The t copula and related copulas. Int. Stat. Rev. 73, 111–129 (2005)

    MATH  Google Scholar 

  2. Embrechts, P., McNeil, A.J., Straumann, D.: Correlation and dependency in risk management: properties and pitfalls. In: Dempster M. (ed.) Risk Management: Value at Risk and Beyond, pp. 176–223. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  3. Falk, M., Hüsler, J., Reiss, R.-D.: Laws of Small Numbers: Extremes and Rare Events. DMV Seminar 23, 2nd edn. Birkhäuser, Basel (2004)

    Google Scholar 

  4. Genz, A., Bretz, F.: Methods for the computation of multivariate t-probabilities. J. Comput. Graph. Stat. 11, 950–971 (2002)

    Article  MathSciNet  Google Scholar 

  5. Hashorva, E.: On the multivariate Hüsler–Reiss distribution attracting the maxima of elliptical triangular arrays. Stat. Probab. Lett. 76(18), 2027–2035 (2006)

    MATH  Article  MathSciNet  Google Scholar 

  6. Hüsler, J. Reiss, R.-D.: Maxima of normal random vectors: between independence and complete dependence. Stat. Probab. Lett. 7(4), 283–286 (1989)

    MATH  Article  Google Scholar 

  7. Joe, H.: Multivariate Models and Dependence Concepts. Chapman & Hall, London (1997)

    Google Scholar 

  8. Kotz, S., Nadarajah, S.: Multivariate t Distributions and Their Applications. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  9. Kurowicka, D., Cooke, R.: Uncertainty Analysis with High Dimensional Dependence Modelling. Wiley, Chichester (2006)

    Google Scholar 

  10. Li, H.: Tail dependence comparison of survival Marshall–Olkin copulas. Methodol. Comput. Appl. Probab. 10(1), 39–54 (2008)

    MATH  Article  MathSciNet  Google Scholar 

  11. Marshall, A., Olkin, I.: A generalized bivariate exponential distribution. J. Appl. Probab. 4, 291–302 (1967a)

    MATH  Article  MathSciNet  Google Scholar 

  12. Marshall, A., Olkin, I.: A multivariate exponential distribution. J. Am. Stat. Assoc. 62, 30–44 (1967b)

    MATH  Article  MathSciNet  Google Scholar 

  13. McNeil, A.J., Frey, R., Embrechts, P.: Quantitative Risk Management: Concepts, Techniques, and Tools. Princeton University Press, Princeton (2005)

    Google Scholar 

  14. Mikosch, T.: Copulas: Tales and facts. Extremes 9, 3–20 (2006)

    Article  MathSciNet  Google Scholar 

  15. Sibuya, M.: Bivariate extreme statistics. Ann. Inst. Stat. Math. 11, 195–210 (1960)

    MATH  Article  MathSciNet  Google Scholar 

  16. Wilson, E.B.: Advanced Calculus. Ginn and Company, Boston (1912)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aristidis K. Nikoloulopoulos.

Additional information

Supported by NSERC Discovery Grant.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nikoloulopoulos, A.K., Joe, H. & Li, H. Extreme value properties of multivariate t copulas. Extremes 12, 129–148 (2009). https://doi.org/10.1007/s10687-008-0072-4

Download citation

Keywords

  • Tail dependence function
  • Extreme value
  • t Copula

AMS 2000 Subject Classifications

  • 62H20
  • 91B30