, Volume 12, Issue 1, pp 33–51 | Cite as

Testing for a multivariate generalized Pareto distribution

  • M. FalkEmail author
  • R. Michel


It has recently been shown by Rootzén and Tajvidi (Bernoulli, 12:917–930, 2006) that modelling exceedances of a random variable over a high threshold (peaks-over-threshold approach [POT]) can also in the multivariate setup be done rationally only by a multivariate generalized Pareto distribution (GPD). The selection of a proper threshold is, however, a crucial problem. The contribution of this paper is twofold: We develop first a non asymptotic and exact level-α test based on the single-sample t-test, which checks whether multivariate data are actually generated by a multivariate GPD. Secondly, this procedure is utilized for the derivation of a t-test based threshold selection rule in multivariate peaks-over-threshold models. The application to a hydrological data set illustrates this approach.


Peaks-over-threshold approach Multivariate extreme value distribution Multivariate generalized Pareto distribution Excess distribution Threshold selection Single-sample t-test 

AMS 2000 Subject Classifications

Primary—62G32; Secondary—62E15, 62G10, 62H05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balkema, A.A., de Haan, L.: Residual life time at great age. Ann. Probab. 2, 792–804 (1974)zbMATHCrossRefGoogle Scholar
  2. Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J., De Waal, D., Ferro, C.: Statistics of Extremes: Theory and Applications. Wiley, New York (2004)zbMATHGoogle Scholar
  3. Coles, S.: An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics, Springer, New York (2001)Google Scholar
  4. Davison, A.C., Smith, R.L.: Models for exceedances over high thresholds. J. R. Stat. Soc. B 52, 393–442 (1990)zbMATHMathSciNetGoogle Scholar
  5. Falk, M., Hüsler, J., Reiss, R.-D.: Laws of Small Numbers: Extremes and Rare Events, 2nd edn. Birkhäuser, Basel (2004)zbMATHGoogle Scholar
  6. Falk, M., Guillou, A.: Peaks-over-threshold stability of multivariate generalized Pareto distributions. J. Multivar. Anal. 99, 715–734 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  7. Fougères, A.-L.: Multivariate extremes. In: Finkenstädt, B., Rootzén, H. (eds.) Extreme Values in Finance, Telecommunications, and the Environment, pp. 373–388. Chapman and Hall, Boca Raton (2004)Google Scholar
  8. Galambos, J.: The Asymptotic Theory of Extreme Order Statistics, 2nd edn. Krieger, Malabar (1987)zbMATHGoogle Scholar
  9. de Haan, L., Ferreira, A.: Extreme Value Theory. An Introduction. Springer, New York (2006)zbMATHGoogle Scholar
  10. de Haan, L., Resnick, S.I.: Limit theory for multivariate sample extremes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 40, 317–337 (1977)zbMATHCrossRefGoogle Scholar
  11. Hall, P.: On some simple estimates of an exponent of regular estimation. J. R. Stat. Soc. 44, 37–42 (1982)zbMATHGoogle Scholar
  12. Kaufmann, E., Reiss, R.-D.: Strong convergence of multivariate point processes of exceedances. Ann. Inst. Stat. Math. 45, 433–444 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  13. Kaufmann, E., Reiss, R.-D.: Approximation rates for multivariate exceedances. J. Stat. Plan. Inference 45, 235–245 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  14. Kotz, S., Nadarajah, S.: Extreme Value Distributions. Imperial College Press, London (2000)zbMATHGoogle Scholar
  15. Michel, R.: Simulation and estimation in multivariate generalized Pareto Models. Ph.D. thesis, University of Würzburg. Available at (2006)
  16. Pickands III, J.: Statistical inference using extreme order statistics. Ann. Stat. 3, 119–131 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  17. Pickands III, J.: Multivariate extreme value distributions. In: Proc. 43th Session ISI (Buenos Aires), pp. 859–878. (1981)Google Scholar
  18. Reiss, R.-D.: A Course on Point Processes. Springer, New York (1993)zbMATHGoogle Scholar
  19. Reiss, R.-D., Thomas, M.: Statistical Analysis of Extreme Values, 3rd edn. Birkhäuser, Basel (2007)zbMATHGoogle Scholar
  20. Resnick, S.I.: Extreme values, regular variation, and point processes. In: Applied Prob., vol. 4. Springer, New York (1987)Google Scholar
  21. Resnick, S.I.: Heavy-Tail Phenomena. Probabilistic and Statistical Modeling. Springer, New York (2007)zbMATHGoogle Scholar
  22. Rootzén, H., Tajvidi, N.: Multivariate generalized Pareto distributions. Bernoulli 12, 917–930 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  23. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures, 4rd edn. Chapman&Hall/CRC, Boca Raton (2007)zbMATHGoogle Scholar
  24. Simonoff, J.S.: Smoothing Methods in Statistics. Springer, New York (1996)zbMATHGoogle Scholar
  25. Stephenson, A.: Simulating Multivariate Extreme Value Distributions of Logistic Type. Extremes 6, 49–59 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  26. Tajvidi, N.: Characterization and some statistical aspects of univariate and multivariate generalised Pareto distributions. Ph.D. thesis, Dept. Math., University of Göteborg (1996)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.University of Würzburg, Institute of Mathematics, Am HublandWürzburgGermany
  2. 2.Altran CISFrankfurt am MainGermany

Personalised recommendations