Likelihood estimation of the extremal index

Abstract

The article develops the approach of Ferro and Segers (J.R. Stat. Soc., Ser. B 65:545, 2003) to the estimation of the extremal index, and proposes the use of a new variable decreasing the bias of the likelihood based on the point process character of the exceedances. Two estimators are discussed: a maximum likelihood estimator and an iterative least squares estimator based on the normalized gaps between clusters. The first provides a flexible tool for use with smoothing methods. A diagnostic is given for condition \(D^{(2)}(u_n)\), under which maximum likelihood is valid. The performance of the new estimators were tested by extensive simulations. An application to the Central England temperature series demonstrates the use of the maximum likelihood estimator together with smoothing methods.

This is a preview of subscription content, log in to check access.

References

  1. Chernick, M.R., Hsing, T., McCormick, W.P.: Calculating the extremal index for a class of stationary sequences. Adv. Appl. Probab. 23, 835–850 (1991)

    MATH  Article  Google Scholar 

  2. Fan, J., Gijbels, I.: Local Polynomial Modelling and Its Applications. Chapman & Hall, London (1996)

    Google Scholar 

  3. Ferro, C.A.T.: Statistical methods for clusters of extreme values. Ph.D. thesis, Lancaster University (2003)

  4. Ferro, C.A.T., Segers, J.: Inference for clusters of extreme values. J. R. Stat. Soc., Ser. B 65, 545–556 (2003)

    MATH  Article  Google Scholar 

  5. Hsing, T.: Extremal index estimation for a weakly dependent stationary sequence. Ann. Stat. 21, 2043–2071 (1993)

    MATH  Google Scholar 

  6. Laurini, F., Tawn, J.: New estimators for the extremal index and other cluster characteristics. Extremes 6, 189–211 (2003)

    MATH  Article  Google Scholar 

  7. Leadbetter, M.R.: Extremes and local dependence in stationary sequences. Z. Wahrscheinlichkeitstheor. Verw. Geb. 65, 291–306 (1983)

    MATH  Article  Google Scholar 

  8. Leadbetter, M.R., Nandagopalan, S.: On exceedance point processes for stationary sequences under mild oscillation restrictions. Lect. Notes Stat. 51, 69–80 (1989)

    Google Scholar 

  9. Leadbetter, M.R., Lindgren, G., Rootzén, H.: Extremes and Related Properties of Random Sequences and Processes. Springer, New York (1983)

    Google Scholar 

  10. Nandagopalan, S.: On the multivariate extremal index. J. Res. Natl. Inst. Stand. Technol. 99, 543–550 (1994)

    MATH  Google Scholar 

  11. Smith, R.L.: The extremal index for a Markov chain. J. Appl. Probab. 29, 37–45 (1992)

    MATH  Article  Google Scholar 

  12. Smith, R.L., Weissman, I.: Estimating the extremal index. J. R. Stat. Soc., Ser. B 56, 515–528 (1994)

    MATH  Google Scholar 

  13. Weissman, I., Novak, S.Yu.: On blocks and runs estimators of the extremal index. J. Stat. Plan. Inference 66, 281–288 (1998)

    MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mária Süveges.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Süveges, M. Likelihood estimation of the extremal index. Extremes 10, 41–55 (2007). https://doi.org/10.1007/s10687-007-0034-2

Download citation

Keywords

  • Central England temperature data
  • Clusters
  • Diagnostic
  • Extremal index
  • Extreme value theory
  • Gaps
  • Local likelihood

AMS 2000 Subject Classification

  • 62G32
  • 62P12
  • 62M09
  • 62F99