, Volume 9, Issue 1, pp 69–86 | Cite as

On testing extreme value conditions



Applications of univariate extreme value theory rely on certain as- sumptions. Recently, two methods for testing these extreme value conditions are derived by [Dietrich, D., de Haan, L., Hüsler, J., Extremes 5: 71–85, (2002)] and [Drees, H., de Haan, L., Li, D., J. Stat. Plan. Inference, 136: 3498–3538, (2006)]. In this paper we compare the two tests by simulations and investigate the effect of a possible weight function by choosing a parameter, the test error and the power of each test. The conclusions are useful for extreme value applications.


Extreme value conditions Test statistic Weight function Power 

AMS 2000 Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, C.W.: Extreme value theory for a class of discrete distributions with application to some stochastic processes. J. Appl. Probab. 7, 99–113 (1970)MATHCrossRefGoogle Scholar
  2. Anderson, C.W., Coles, S., Hüsler, J.: Maxima of Poisson-like variables and related triangular arrays. Ann. Appl. Probab. 7, 953–971 (1997)MATHMathSciNetCrossRefGoogle Scholar
  3. Dekkers, A.L.M., de Haan, L., Einmahl, J.H.J.: A moment estimator for the index of an extreme-value distribution. Ann. Stat. 17, 1833–1855 (1989)MATHGoogle Scholar
  4. Dietrich, D., de Haan, L., Hüsler, J.: Testing extreme value conditions. Extremes 5, 71–85 (2002)MathSciNetCrossRefGoogle Scholar
  5. Drees, H., Ferreira, A., de Haan, L.: On the maximum likelihood estimation of the extreme value index. Ann. Appl. Probab. 14, 1179–1201 (2004)MATHMathSciNetCrossRefGoogle Scholar
  6. Drees, H., de Haan, L., Li, D.: Approximations to the tail empirical distribution function with application to testing extreme value conditions. J. Stat. Plan. Inference 136, 3498–3538 (2006)CrossRefMATHGoogle Scholar
  7. Falk, M., Hüsler, J., Reiss, R.D.: Laws of Small Numbers: Extremes and Rare Events. Birkhäuser, Switzerland (2004)MATHGoogle Scholar
  8. Geluk, J., de Haan, L.: Regular Variation, Extensions and Tauberian Theorems. CWI Tract 40, Amsterdam (1987)Google Scholar
  9. de Haan, L., Rootzén, H.: On the estimation of high quantiles. J. Stat. Plan. Inference 35, 1–13 (1993)MATHCrossRefGoogle Scholar
  10. de Haan, L., Stadtmüller, U.: Generalized regular variation of second order. J. Aust. Math. Soc., Ser. A 61, 381–395 (1996)MATHCrossRefGoogle Scholar
  11. Hall, P.: On estimating the endpoint of a distribution. Ann. Stat. 10, 556–568 (1982)MATHGoogle Scholar
  12. Hill, B.M.: A simple approach to inference about the tail of a distribution. Ann. Stat. 3, 1163–1174 (1975)MATHGoogle Scholar
  13. Leadbetter, M.R., Lindgren, G., Rootzén, H.: Extremes and Related Properties of Random Sequences and Processes. Springer, Berlin Heidelberg New York (1983)MATHGoogle Scholar
  14. Nadarajah, S., Mitov, K.: Asymptotics of maxima of discrete random variables. Extremes 5, 287–294 (2003)MATHMathSciNetCrossRefGoogle Scholar
  15. Pickands, J.: Statistical inference using extreme order statistics. Ann. Stat. 3, 119–131 (1975)MATHMathSciNetGoogle Scholar
  16. Smith, R.L.: Maximum likelihood estimation in a class of nonregular cases. Biometrika 72, 67–90 (1985)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Mathematical Statistics and Actuarial ScienceUniversity of BernBernSwitzerland

Personalised recommendations