, Volume 8, Issue 4, pp 345–356 | Cite as

Modelling of extreme wave heights and periods through copulas

  • D. J. de Waal
  • P. H. A. J. M. van Gelder


Optimal design of coastal or offshore structures requires the estimation of extreme quantiles of oceanographic data such as wave heights and wave periods. Since there are strong correlations between oceanographic variables, it is necessary to use multivariate models in order to capture its dependencies. To achieve this, an approach based on copulas is proposed and is compared to a model based on the physical behaviour of waves.


Asymptotic independence Extreme value theory Joint probability density functions Multivariate extreme value distribution Oceanography Threshold models Dirichlet process BPL copulas 

AMS 2000 Subject Classification

Primary—46N30 62G32 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Basu, S., Chib, S.: Marginal likelihood and Bayes factors for Dirichlet Process based mixture models (personal communicated manuscript) (2001)Google Scholar
  2. Beirlant, J., Teugels, J.L., Vynckier, P.: Practical Analysis of Extreme Values. Leuven University Press (1996)Google Scholar
  3. Clayton D.G.: A model for association in bivariate life tables and its application in epidemiology studies of familial tendency in chronic disease incidence. Biometrika 65, 141–151 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  4. Cook, R.D., Johnson, M.E.: Generalized Burr‐Pareto‐Logistic distributions with applications to a uranium exploration data set. Technometrics 28(2), 123–131 (1986)CrossRefMathSciNetGoogle Scholar
  5. Fang, Z.S., Hogben, N.: Analysis and prediction of long-term probability distributions of wave height and periods. Technical report of the National Maritime Institute, London (1982)Google Scholar
  6. Ferguson, T.S.: Bayesian density estimation by mixtures of normal distributions. Recent Advances in Statistics: Papers in Honor of Herman Chernoff on his 60th Birthday, pp. 202–287. Academic, New York (1983)Google Scholar
  7. Frees, E.W., Valdez, E.A.: Understanding relationships using copulas. N. Am. Actuar. J. 2(1), 1–25 (2002)MathSciNetGoogle Scholar
  8. Haver, S.: Wave climate off northern Norway. Appl. Ocean Res. 7, 85–92 (1985)CrossRefGoogle Scholar
  9. Hawkes, P.J., Gouldby, B.R., Tawn, J.A., Owen, M.W.: The joint probability of waves and water levels in coastal engineering design. J. Hydraul. Res. 40(3), 241–251 (2002)CrossRefGoogle Scholar
  10. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian data analysis. Chapman & Hall, London, UK (1995)Google Scholar
  11. Lo, A.Y.: On a class of Bayesian nonparametric estimates. I. Density estimates. Ann. Stat. 12, 351–357 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  12. Mathiesen, M., Goda, Y., Hawkes, P.J., Mansard, E., Martin, M.J., Peltier, E., Thompson, E.F., Van Vledder, G.: Recommended practice for extreme wave analysis. J. Hydraul. Res. 32(6), 803–814 (1994)CrossRefGoogle Scholar
  13. Morton, I.D., Bowers, J.: Extreme values in a multivariate offshore environments. Appl. Ocean Res. 18, 303–317 (1997)CrossRefGoogle Scholar
  14. Ochi, M.K.: Wave statistics for ships and structures. Proc. SNAME conf, New York (1978)Google Scholar
  15. Repko, A., Van Gelder, P.H.A.J.M., Voortman, H.G., Vrijling, J.K.: Bivariate statistical analysis of wave climates, Proceedings of the 27th ICCE, Vol. 1, pp. 583–596. Coastal Engineering 2000, Sydney, Australia, 16–21, Ed. Billy L. Edge, ASCE (2000)Google Scholar
  16. Venter, G.G.: Tails of copulas. Paper appears in website (2002)
  17. Vrijling, J.K.: Probabilistic Design in Hydraulic Eng., Delft Univ. of Tech (1996)Google Scholar
  18. Walker, S.G., Damien, P., Land, P.W., Smith, A.F.M.: Bayesian nonparametric inference for random distributions and related functions. J. R. Statist. Soc. B 61(part 3), 485–527 (1999)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • D. J. de Waal
    • 1
  • P. H. A. J. M. van Gelder
    • 2
  1. 1.University of the Free StateBloemfonteinSouth Africa
  2. 2.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations