Advertisement

Experimental Astronomy

, Volume 48, Issue 1, pp 77–95 | Cite as

GRID: a student project to monitor the transient gamma-ray sky in the multi-messenger astronomy era

  • Jiaxing Wen
  • Xiangyun Long
  • Xutao Zheng
  • Yu An
  • Zhengyang Cai
  • Jirong Cang
  • Yuepeng Che
  • Changyu Chen
  • Liangjun Chen
  • Qianjun Chen
  • Ziyun Chen
  • Yingjie Cheng
  • Litao Deng
  • Wei Deng
  • Wenqing Ding
  • Hangci Du
  • Lian Duan
  • Quan Gan
  • Tai Gao
  • Zhiying Gao
  • Wenbin Han
  • Yiying Han
  • Xinbo He
  • Xinhao He
  • Long Hou
  • Fan Hu
  • Junling Hu
  • Bo Huang
  • Dongyang Huang
  • Xuefeng Huang
  • Shihai Jia
  • Yuchen Jiang
  • Yifei Jin
  • Ke Li
  • Siyao Li
  • Yurong Li
  • Jianwei Liang
  • Yuanyuan Liang
  • Wei Lin
  • Chang Liu
  • Gang Liu
  • Mengyuan Liu
  • Rui Liu
  • Tianyu Liu
  • Wanqiang Liu
  • Di’an Lu
  • Peiyibin Lu
  • Zhiyong Lu
  • Xiyu Luo
  • Sizheng Ma
  • Yuanhang Ma
  • Xiaoqing Mao
  • Yanshan Mo
  • Qiyuan Nie
  • Shuiyin Qu
  • Xiaolong Shan
  • Gengyuan Shi
  • Weiming Song
  • Zhigang Sun
  • Xuelin Tan
  • Songsong Tang
  • Mingrui Tao
  • Boqin Wang
  • Yue Wang
  • Zhiang Wang
  • Qiaoya Wu
  • Xuanyi Wu
  • Yuehan Xia
  • Hengyuan Xiao
  • Wenjin Xie
  • Dacheng Xu
  • Rui Xu
  • Weili Xu
  • Longbiao Yan
  • Shengyu Yan
  • Dongxin Yang
  • Hang Yang
  • Haoguang Yang
  • Yi-Si Yang
  • Yifan Yang
  • Lei Yao
  • Huan Yu
  • Yangyi Yu
  • Aiqiang Zhang
  • Bingtao Zhang
  • Lixuan Zhang
  • Maoxing Zhang
  • Shen Zhang
  • Tianliang Zhang
  • Yuchong Zhang
  • Qianru Zhao
  • Ruining Zhao
  • Shiyu Zheng
  • Xiaolong Zhou
  • Runyu Zhu
  • Yu Zou
  • Peng An
  • Yifu Cai
  • Hongbing Chen
  • Zigao Dai
  • Yizhong Fan
  • Changqing Feng
  • Hua FengEmail author
  • He Gao
  • Liang Huang
  • Mingming Kang
  • Lixin Li
  • Zhuo Li
  • Enwei Liang
  • Lin Lin
  • Qianqian Lin
  • Congzhan Liu
  • Hongbang Liu
  • Xuewen Liu
  • Yinong Liu
  • Xiang Lu
  • Shude Mao
  • Rongfeng Shen
  • Jing Shu
  • Meng Su
  • Hui Sun
  • Pak-Hin Tam
  • Chi-Pui Tang
  • Yang Tian
  • Fayin Wang
  • Jianjun Wang
  • Wei Wang
  • Zhonghai Wang
  • Jianfeng Wu
  • Xuefeng Wu
  • Shaolin Xiong
  • Can Xu
  • Jiandong Yu
  • Wenfei Yu
  • Yunwei Yu
  • Ming ZengEmail author
  • Zhi Zeng
  • Bin-Bin ZhangEmail author
  • Bing Zhang
  • Zongqing Zhao
  • Rong Zhou
  • Zonghong Zhu
Original Article

Abstract

The Gamma-Ray Integrated Detectors (GRID) is a space mission concept dedicated to monitoring the transient gamma-ray sky in the energy range from 10 keV to 2 MeV using scintillation detectors onboard CubeSats in low Earth orbits. The primary targets of GRID are the gamma-ray bursts (GRBs) in the local universe. The scientific goal of GRID is, in synergy with ground-based gravitational wave (GW) detectors such as LIGO and VIRGO, to accumulate a sample of GRBs associated with the merger of two compact stars and study jets and related physics of those objects. It also involves observing and studying other gamma-ray transients such as long GRBs, soft gamma-ray repeaters, terrestrial gamma-ray flashes, and solar flares. With multiple CubeSats in various orbits, GRID is unaffected by the Earth occultation and serves as a full-time and all-sky monitor. Assuming a horizon of 200 Mpc for ground-based GW detectors, we expect to see a few associated GW-GRB events per year. With about 10 CubeSats in operation, GRID is capable of localizing a faint GRB like 170817A with a 90% error radius of about 10 degrees, through triangulation and flux modulation. GRID is proposed and developed by students, with considerable contribution from undergraduate students, and will remain operated as a student project in the future. The current GRID collaboration involves more than 20 institutes and keeps growing. On August 29th, the first GRID detector onboard a CubeSat was launched into a Sun-synchronous orbit and is currently under test.

Keywords

Gamma-ray bursts Gravitational waves Scintillation detector SiPM CubeSat 

Notes

Acknowledgements

We thank the referee for useful comments. HF acknowledges funding support from the National Natural Science Foundation of China under the grant Nos. 11633003 & 11821303, and the National Key R&D Program of China (grant Nos. 2018YFA0404502 and 2016YFA040080X). BBZ acknowledges support from National Thousand Young Talents program of China and National Key Research and Development Program of China (2018YFA0404204) and The National Natural Science Foundation of China (grant No. 11833003). This work is supported by Tsinghua University Initiative Scientific Research Program.

References

  1. 1.
    Abbott, B.P., Abbott, R., Abbott, T.D., et al.: Prospects for observing and localizing gravitational-wave transients with advanced LIGO and advanced virgo. Living Rev. Relat. 19(1), 1 (2016).  https://doi.org/10.1007/lrr-2016-1 ADSGoogle Scholar
  2. 2.
    Abbott, B.P., Abbott, R., Abbott, T.D., et al.: A gravitational-wave standard siren measurement of the Hubble constant. Nature 551(7678), 85–88 (2017).  https://doi.org/10.1038/nature24471 ADSzbMATHGoogle Scholar
  3. 3.
    Abbott, B.P., Abbott, R., Abbott, T.D., et al.: Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. 848(2), L13 (2017).  https://doi.org/10.3847/2041-8213/aa920c ADSGoogle Scholar
  4. 4.
    Abbott, B.P., Abbott, R., Abbott, T.D., et al.: GW170817: Observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119(16), 161101 (2017).  https://doi.org/10.1103/PhysRevLett.119.161101 ADSGoogle Scholar
  5. 5.
    Abbott, B.P., Abbott, R., Abbott, T.D., et al.: Multi-messenger observations of a binary neutron star merger. Astrophys. J. 848(2), L12 (2017).  https://doi.org/10.3847/2041-8213/aa91c9 ADSzbMATHGoogle Scholar
  6. 6.
    Ackermann, M., Ajello, M., Allafort, A., et al.: Fermi detection of γ-ray emission from the M2 soft X-ray flare on 2010 June 12. Astrophys. J. 745 (2), 144 (2012).  https://doi.org/10.1088/0004-637X/745/2/144 ADSGoogle Scholar
  7. 7.
    Ai, S., Gao, H., Dai, Z.G., et al.: The allowed parameter space of a long-lived neutron star as the merger remnant of GW170817. Astrophys. J. 860(1), 57 (2018).  https://doi.org/10.3847/1538-4357/aac2b7 ADSGoogle Scholar
  8. 8.
    Ajello, M., Allafort, A., Axelsson, M., et al.: Fermi-LAT observations of LIGO/virgo event GW170817. Astrophys. J. 861(2), 85 (2018).  https://doi.org/10.3847/1538-4357/aac515 ADSGoogle Scholar
  9. 9.
    Arcavi, I., Hosseinzadeh, G., Howell, D.A., et al.: Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger. Nature 551 (7678), 64–66 (2017).  https://doi.org/10.1038/nature24291 ADSGoogle Scholar
  10. 10.
    Beniamini, P., Petropoulou, M., Barniol Duran, R., Giannios, D.: A lesson from GW170817: most neutron star mergers result in tightly collimated successful GRB jets. Mon. Not. R. Astron. Soc. 483(1), 840–851 (2019).  https://doi.org/10.1093/mnras/sty3093 ADSGoogle Scholar
  11. 11.
    Bloser, P.F., Legere, J., Bancroft, C., et al.: Scintillator gamma-ray detectors with silicon photomultiplier readouts for high-energy astronomy. In: Proc. SPIE, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8859, p. 88590A.  https://doi.org/10.1117/12.2024411 (2013)
  12. 12.
    Briggs, M.S., Connaughton, V., Wilson-Hodge, C., et al.: Electron-positron beams from terrestrial lightning observed with Fermi GBM. Geophys. Res. Lett. 38 (2), L02808 (2011).  https://doi.org/10.1029/2010GL046259 ADSGoogle Scholar
  13. 13.
    Briggs, M.S., Fishman, G.J., Connaughton, V., et al.: First results on terrestrial gamma ray flashes from the Fermi Gamma-ray Burst Monitor. J. Geophys. Res. (Space Physics) 115(A7), A07323 (2010).  https://doi.org/10.1029/2009JA015242 ADSGoogle Scholar
  14. 14.
    Chattopadhyay, T., Falcon, A.D., Burrows, D.N., Fox, D.B., Palmer, D.: BlackCAT CubeSat: A soft x-ray sky monitor, transient finder, and burst detector for high-energy and multimessenger astophysics. In: Proc. SPIE, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10699, p. 106995S.  https://doi.org/10.1117/12.2314274 (2018)
  15. 15.
    Cohen, M.B., Inan, U.S., Fishman, G.: Terrestrial gamma ray flashes observed aboard the compton gamma ray observatory/burst and transient source experiment and ELF/VLF radio atmospherics. J. Geophys. Res. (Atmospheres) 111(D24), D24109 (2006).  https://doi.org/10.1029/2005JD006987 ADSGoogle Scholar
  16. 16.
    Collazzi, A.C., Kouveliotou, C., van der Horst, A.J., et al.: The five year fermi/gBM magnetar burst catalog. ApJS 218(1), 11 (2015).  https://doi.org/10.1088/0067-0049/218/1/11 ADSGoogle Scholar
  17. 17.
    Connaughton, V., Briggs, M.S., Goldstein, A., et al.: Localization of gamma-ray bursts using the fermi gamma-ray burst monitor. ApJS 216(2), 32 (2015).  https://doi.org/10.1088/0067-0049/216/2/32 ADSGoogle Scholar
  18. 18.
    Connaughton, V., Briggs, M.S., Xiong, S., et al.: Radio signals from electron beams in terrestrial gamma ray flashes. J. Geophys. Res. (Space Physics) 118(5), 2313–2320 (2013).  https://doi.org/10.1029/2012JA018288 ADSGoogle Scholar
  19. 19.
    Cummer, S.A., Lu, G., Briggs, M.S., et al.: The lightning-TGF relationship on microsecond timescales. Geophys. Res. Lett. 38(14), L14810 (2011).  https://doi.org/10.1029/2011GL048099 ADSGoogle Scholar
  20. 20.
    Drout, M.R., Piro, A.L., Shappee, B.J., et al.: Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis. Science 358(6370), 1570–1574 (2017).  https://doi.org/10.1126/science.aaq0049 ADSGoogle Scholar
  21. 21.
    Duncan, R.C., Thompson, C.: Formation of very strongly magnetized neutron stars: Implications for gamma-ray bursts. Astrophys. J. 392, L9 (1992).  https://doi.org/10.1086/186413 ADSGoogle Scholar
  22. 22.
    Dwyer, J.R.: A fundamental limit on electric fields in air. Geophys. Res. Lett. 30(20), 2055 (2003).  https://doi.org/10.1029/2003GL017781 ADSGoogle Scholar
  23. 23.
    Eichler, D., Livio, M., Piran, T., Schramm, D.N.: Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars. Nature 340 (6229), 126–128 (1989).  https://doi.org/10.1038/340126a0 ADSGoogle Scholar
  24. 24.
    Fishman, G.J., Bhat, P.N., Mallozzi, R., et al.: Discovery of intense gamma-ray flashes of atmospheric origin. Science 264(5163), 1313–1316 (1994).  https://doi.org/10.1126/science.264.5163.1313 ADSGoogle Scholar
  25. 25.
    Fong, W., Berger, E., Margutti, R., Zauderer, B.A.: A decade of short-duration gamma-ray burst broadband afterglows: Energetics, circumburst densities, and jet opening angles. Astrophys. J. 815(2), 102 (2015).  https://doi.org/10.1088/0004-637X/815/2/102 ADSGoogle Scholar
  26. 26.
    Fuschino, F., Campana, R., Labanti, C., et al.: HERMES: An ultra-wide band X and gamma-ray transient monitor on board a nano-satellite constellation. arXiv:1812.02432 (2018)
  27. 27.
    Gehrels, N.: Instrumental background in gamma-ray spectrometers flown in low earth orbit. In: Nuclear Instruments and Methods in Physics Research, vol. 313, pp. 513–528 (1992)Google Scholar
  28. 28.
    Goldstein, A., Veres, P., Burns, E., et al.: Fermi Observations of the LIGO Event GW170104. Astrophys. J. 846 (1), L5 (2017).  https://doi.org/10.3847/2041-8213/aa8319 ADSGoogle Scholar
  29. 29.
    Gottlieb, O., Nakar, E., Piran, T.: The cocoon emission - an electromagnetic counterpart to gravitational waves from neutron star mergers. Mon. Not. R. Astron. Soc. 473(1), 576–584 (2018).  https://doi.org/10.1093/mnras/stx2357 ADSGoogle Scholar
  30. 30.
    Grodzicka-Kobylka, M., Szczesniak, T., Moszyński, M.: Comparison of SensL and Hamamatsu 4 × 4 channel SiPM arrays in gamma spectrometry with scintillators. Nucl. Inst. Methods Phys. Res. A 856, 53–64 (2017).  https://doi.org/10.1016/j.nima.2017.03.015 ADSGoogle Scholar
  31. 31.
    Hui, C.M., Briggs, M.S., Goldstein, A., et al.: MoonBEAM: A beyond-LEO gamma-ray burst detector for gravitational-wave astronomy. In: Deep Space Gateway Concept Science Workshop, vol. 2063, p. 3060 (2018)Google Scholar
  32. 32.
    Hurley, K., Svinkin, D.S., Aptekar, R.L., et al.: The interplanetary network response to LIGO GW150914. Astrophys. J. 829(1), L12 (2016).  https://doi.org/10.3847/2041-8205/829/1/L12 ADSGoogle Scholar
  33. 33.
    Inan, U.S., Reising, S.C., Fishman, G.J., Horack, J.M.: On the association of terrestrial gamma-ray bursts with lightning and implications for sprites. Geophys. Res. Lett. 23(9), 1017–1020 (1996).  https://doi.org/10.1029/96GL00746 ADSGoogle Scholar
  34. 34.
    Iwanowska, J., Swiderski, L., Szczesniak, T., et al.: Performance of cerium-doped Gd3Al2Ga3 O 12 (GAGG:Ce) scintillator in gamma-ray spectrometry. Nucl. Inst. Methods Phys. Res. A 712, 34–40 (2013).  https://doi.org/10.1016/j.nima.2013.01.064 ADSGoogle Scholar
  35. 35.
    Jin, Z.P., Hotokezaka, K., Li, X., et al.: The Macronova in GRB 050709 and the GRB-macronova connection. Nat. Commun. 7, 12898 (2016).  https://doi.org/10.1038/ncomms12898 ADSGoogle Scholar
  36. 36.
    Kasliwal, M.M., Nakar, E., Singer, L.P., et al.: Illuminating gravitational waves: A concordant picture of photons from a neutron star merger. Science 358 (6370), 1559–1565 (2017).  https://doi.org/10.1126/science.aap9455 ADSGoogle Scholar
  37. 37.
    Li, L.X., Paczyński, B.: Transient events from neutron star mergers. Astrophys. J. 507(1), L59–L62 (1998).  https://doi.org/10.1086/311680 ADSGoogle Scholar
  38. 38.
    Li, T.P.: Timing in the time domain: Cygnus X-1. Chinese J. Astron. Astrophys. 1, 313–332 (2001).  https://doi.org/10.1088/1009-9271/1/4/313 ADSGoogle Scholar
  39. 39.
    Metzger, B.D., Martínez-Pinedo, G., Darbha, S., et al.: Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Mon. Not. R. Astron. Soc 406(4), 2650–2662 (2010).  https://doi.org/10.1111/j.1365-2966.2010.16864.x ADSGoogle Scholar
  40. 40.
    Murphy, D., Joe, F., Thompson, J.W., et al.: EIRSAT-1 – the educational Irish research satellite. In: Proceedings of the 2nd Symposium on Space Educational Activities, vol. 8859 (2018)Google Scholar
  41. 41.
    Nava, L., Ghirlanda, G., Ghisellini, G., Celotti, A.: Spectral properties of 438 GRBs detected by Fermi/GBM. Astron. Astrophys. 530, A21 (2011).  https://doi.org/10.1051/0004-6361/201016270 ADSGoogle Scholar
  42. 42.
    Ohno, M., Werner, N., Pál, A., et al.: CAMELOT: Design and performance verification of the detector concept and localization capability. In: Proc. SPIE, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10699, p. 1069964.  https://doi.org/10.1117/12.2313228 (2018)
  43. 43.
    Olausen, S.A., Kaspi, V.M.: The McGill Magnetar Catalog. ApJS 212(1), 6 (2014).  https://doi.org/10.1088/0067-0049/212/1/6 ADSGoogle Scholar
  44. 44.
    Paczynski, B.: Gamma-ray bursters at cosmological distances. Astrophys. J. 308, L43–L46 (1986).  https://doi.org/10.1086/184740 ADSGoogle Scholar
  45. 45.
    Pian, E., D’Avanzo, P., Benetti, S., et al.: Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 551(7678), 67–70 (2017).  https://doi.org/10.1038/nature24298 ADSGoogle Scholar
  46. 46.
    Pozanenko, A.S., Barkov, M.V., Minaev, P.Y., et al.: GRB 170817A associated with GW170817: Multi-frequency observations and modeling of prompt gamma-ray emission. Astrophys. J. 852(2), L30 (2018).  https://doi.org/10.3847/2041-8213/aaa2f6 ADSGoogle Scholar
  47. 47.
    Racusin, J., Perkins, J.S., Briggs, M.S., et al.: BurstCube: A cubesat for gravitational wave counterparts. arXiv:http://arXiv.org/abs/1708.09292 (2017)
  48. 48.
    Savchenko, V., Ferrigno, C., Kuulkers, E., et al.: INTEGRAL detection of the first prompt gamma-ray signal coincident with the gravitational-wave event GW170817. Astrophys. J. 848(2), L15 (2017).  https://doi.org/10.3847/2041-8213/aa8f94 ADSGoogle Scholar
  49. 49.
    Smartt, S.J., Chen, T.W., Jerkstrand, A., et al.: A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 551(7678), 75–79 (2017).  https://doi.org/10.1038/nature24303 ADSGoogle Scholar
  50. 50.
    Sun, H., Zhang, B., Li, Z.: Extragalactic high-energy transients: Event rate densities and luminosity functions. Astrophys. J. 812(1), 33 (2015).  https://doi.org/10.1088/0004-637X/812/1/33 ADSGoogle Scholar
  51. 51.
    Tanvir, N.R., Levan, A.J., Fruchter, A.S., et al.: A ‘kilonova’ associated with the short-duration γ-ray burst GRB 130603B. Nature 500 (7464), 547–549 (2013).  https://doi.org/10.1038/nature12505 ADSGoogle Scholar
  52. 52.
    Tavani, M., Marisaldi, M., Fuschino, F., et al.: Terrestrial gamma-ray flashes at the highest energies as detected by AGILE. In: AGU Fall meeting abstracts, vol. 2011, pp. AE24A–06 (2011)Google Scholar
  53. 53.
    Tur, C., Solovyev, V., Flamanc, J.: Temperature characterization of scintillation detectors using solid-state photomultipliers for radiation monitoring applications. Nucl. Inst. Methods Phys. Res. A 620(2-3), 351–358 (2010).  https://doi.org/10.1016/j.nima.2010.03.141 ADSGoogle Scholar
  54. 54.
    Ulyanov, A., Morris, O., Hanlon, L., et al.: Performance of a monolithic LaBr3:Ce crystal coupled to an array of silicon photomultipliers. Nucl. Inst. Methods Phys. Res. A 810, 107–119 (2016).  https://doi.org/10.1016/j.nima.2015.11.148 ADSGoogle Scholar
  55. 55.
    Wanderman, D., Piran, T.: The rate, luminosity function and time delay of non-Collapsar short GRBs. Mon. Not. R. Astron. Soc. 448(4), 3026–3037 (2015).  https://doi.org/10.1093/mnras/stv123 ADSGoogle Scholar
  56. 56.
    Werner, N., et al., Řípa, J., Pál, A.: CAMELOT: Cubesats applied for MEasuring and LOcalising transients mission overview. In: Proc. SPIE, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10699, p. 106992P.  https://doi.org/10.1117/12.2313764 (2018)
  57. 57.
    Yoneyama, M., Kataoka, J., Arimoto, M., et al.: Evaluation of GAGG:Ce scintillators for future space applications. J. Instrument. 13(2), P02,023 (2018).  https://doi.org/10.1088/1748-0221/13/02/P02023 Google Scholar
  58. 58.
    Yuan, W., Zhang, C., Ling, Z., et al.: Einstein Probe: A lobster-eye telescope for monitoring the x-ray sky. In: Proc. SPIE, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10699, p. 1069925.  https://doi.org/10.1117/12.2313358 (2018)
  59. 59.
    Yue, C., Hu, Q., Zhang, F.W., et al.: How Special Is GRB 170817A? Astrophys. J. 853(1), L10 (2018).  https://doi.org/10.3847/2041-8213/aaa66c ADSGoogle Scholar
  60. 60.
    Zhang, B., Zhang, B.B., Virgili, F.J., et al.: Discerning the physical origins of cosmological gamma-ray bursts based on multiple observational criteria: The cases of z = 6.7 GRB 080913, z = 8.2 GRB 090423, and some short/hard GRBs. Astrophys. J. 703(2), 1696–1724 (2009).  https://doi.org/10.1088/0004-637X/703/2/1696 ADSGoogle Scholar
  61. 61.
    Zhang, B.B., Zhang, B., Sun, H., et al.: A peculiar low-luminosity short gamma-ray burst from a double neutron star merger progenitor. Nat. Commun. 9, 447 (2018).  https://doi.org/10.1038/s41467-018-02847-3 ADSGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Jiaxing Wen
    • 1
    • 2
  • Xiangyun Long
    • 3
  • Xutao Zheng
    • 1
  • Yu An
    • 4
  • Zhengyang Cai
    • 3
  • Jirong Cang
    • 1
  • Yuepeng Che
    • 5
  • Changyu Chen
    • 1
  • Liangjun Chen
    • 4
  • Qianjun Chen
    • 1
  • Ziyun Chen
    • 6
    • 7
  • Yingjie Cheng
    • 8
  • Litao Deng
    • 4
  • Wei Deng
    • 4
  • Wenqing Ding
    • 9
  • Hangci Du
    • 3
  • Lian Duan
    • 10
  • Quan Gan
    • 3
  • Tai Gao
    • 10
  • Zhiying Gao
    • 10
  • Wenbin Han
    • 1
  • Yiying Han
    • 10
  • Xinbo He
    • 11
  • Xinhao He
    • 12
  • Long Hou
    • 10
  • Fan Hu
    • 13
  • Junling Hu
    • 4
  • Bo Huang
    • 4
  • Dongyang Huang
    • 1
  • Xuefeng Huang
    • 4
  • Shihai Jia
    • 1
  • Yuchen Jiang
    • 1
  • Yifei Jin
    • 1
  • Ke Li
    • 10
  • Siyao Li
    • 12
  • Yurong Li
    • 10
  • Jianwei Liang
    • 1
  • Yuanyuan Liang
    • 10
  • Wei Lin
    • 1
  • Chang Liu
    • 1
  • Gang Liu
    • 1
  • Mengyuan Liu
    • 10
  • Rui Liu
    • 14
  • Tianyu Liu
    • 10
  • Wanqiang Liu
    • 3
  • Di’an Lu
    • 1
  • Peiyibin Lu
    • 1
  • Zhiyong Lu
    • 1
  • Xiyu Luo
    • 10
  • Sizheng Ma
    • 3
  • Yuanhang Ma
    • 1
  • Xiaoqing Mao
    • 10
  • Yanshan Mo
    • 4
  • Qiyuan Nie
    • 1
  • Shuiyin Qu
    • 10
  • Xiaolong Shan
    • 15
  • Gengyuan Shi
    • 16
  • Weiming Song
    • 8
  • Zhigang Sun
    • 7
    • 17
  • Xuelin Tan
    • 4
  • Songsong Tang
    • 10
  • Mingrui Tao
    • 10
  • Boqin Wang
    • 1
  • Yue Wang
    • 1
  • Zhiang Wang
    • 18
  • Qiaoya Wu
    • 12
  • Xuanyi Wu
    • 3
  • Yuehan Xia
    • 4
  • Hengyuan Xiao
    • 3
  • Wenjin Xie
    • 4
  • Dacheng Xu
    • 1
  • Rui Xu
    • 1
  • Weili Xu
    • 10
  • Longbiao Yan
    • 10
  • Shengyu Yan
    • 4
  • Dongxin Yang
    • 1
  • Hang Yang
    • 19
  • Haoguang Yang
    • 9
  • Yi-Si Yang
    • 8
  • Yifan Yang
    • 3
  • Lei Yao
    • 3
  • Huan Yu
    • 1
  • Yangyi Yu
    • 1
  • Aiqiang Zhang
    • 1
  • Bingtao Zhang
    • 1
  • Lixuan Zhang
    • 19
  • Maoxing Zhang
    • 1
  • Shen Zhang
    • 10
  • Tianliang Zhang
    • 1
  • Yuchong Zhang
    • 3
  • Qianru Zhao
    • 10
  • Ruining Zhao
    • 19
  • Shiyu Zheng
    • 15
  • Xiaolong Zhou
    • 8
  • Runyu Zhu
    • 13
  • Yu Zou
    • 1
  • Peng An
    • 5
  • Yifu Cai
    • 20
  • Hongbing Chen
    • 7
  • Zigao Dai
    • 8
  • Yizhong Fan
    • 21
  • Changqing Feng
    • 18
  • Hua Feng
    • 1
    • 22
    Email author
  • He Gao
    • 19
  • Liang Huang
    • 23
  • Mingming Kang
    • 10
  • Lixin Li
    • 24
  • Zhuo Li
    • 24
  • Enwei Liang
    • 4
  • Lin Lin
    • 19
  • Qianqian Lin
    • 25
  • Congzhan Liu
    • 26
  • Hongbang Liu
    • 4
  • Xuewen Liu
    • 10
  • Yinong Liu
    • 1
  • Xiang Lu
    • 4
  • Shude Mao
    • 22
  • Rongfeng Shen
    • 11
  • Jing Shu
    • 27
  • Meng Su
    • 28
  • Hui Sun
    • 29
  • Pak-Hin Tam
    • 11
  • Chi-Pui Tang
    • 30
  • Yang Tian
    • 1
  • Fayin Wang
    • 8
  • Jianjun Wang
    • 5
  • Wei Wang
    • 25
  • Zhonghai Wang
    • 10
  • Jianfeng Wu
    • 12
  • Xuefeng Wu
    • 21
  • Shaolin Xiong
    • 26
  • Can Xu
    • 23
  • Jiandong Yu
    • 5
  • Wenfei Yu
    • 31
  • Yunwei Yu
    • 32
  • Ming Zeng
    • 1
    Email author
  • Zhi Zeng
    • 1
  • Bin-Bin Zhang
    • 8
    • 33
    Email author
  • Bing Zhang
    • 34
  • Zongqing Zhao
    • 2
  • Rong Zhou
    • 10
  • Zonghong Zhu
    • 19
  1. 1.Department of Engineering Physics and Center for AstrophysicsTsinghua UniversityBeijingChina
  2. 2.Science and Technology on Plasma Physics Laboratory, Laser Fusion Research CenterChinese Academy of Engineering PhysicsMianyangChina
  3. 3.Department of Physics and Center for AstrophysicsTsinghua UniversityBeijingChina
  4. 4.Guangxi Key Laboratory for Relativistic Astrophysics, Department of PhysicsGuangxi UniversityNanningChina
  5. 5.School of Electronic and Information EngineeringNingbo University of TechnologyNingboChina
  6. 6.Department of Instruments Science & EngineeringShanghai Jiaotong UniversityShanghaiChina
  7. 7.School of Materials Science & Chemical EngineeringNingbo UniversityNingboChina
  8. 8.School of Astronomy and Space ScienceNanjing UniversityNanjingChina
  9. 9.School of Aerospace EngineeringTsinghua UniversityBeijingChina
  10. 10.College of Physical Science and TechnologySichuan UniversityChengduChina
  11. 11.School of Physics and AstronomySun Yat-Sen UniversityZhuhaiChina
  12. 12.Department of AstronomyXiamen UniversityXiamenChina
  13. 13.School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijingChina
  14. 14.Department of Foreign Languages and LiteraturesTsinghua UniversityBeijingChina
  15. 15.Department of Electrical EngineeringTsinghua UniversityBeijingChina
  16. 16.School of SoftwareTsinghua UniversityBeijingChina
  17. 17.Faculty of Electrical Engineering and Computer ScienceNingbo UniversityNingboChina
  18. 18.Department of Modern Physics, School of Physical SciencesUniversity of Science and Technology of ChinaHefeiChina
  19. 19.Department of AstronomyBeijing Normal UniversityBeijingChina
  20. 20.Department of Astronomy, School of Physical SciencesUniversity of Science and Technology of ChinaHefeiChina
  21. 21.Purple Mountain ObservatoryChinese Academy of SciencesNanjingChina
  22. 22.Department of AstronomyTsinghua UniversityBeijingChina
  23. 23.School of Physical Science and TechnologyLanzhou UniversityLanzhouChina
  24. 24.Kavli Institute for Astronomy and Astrophysics, Department of Astronomy, School of PhysicsPeking UniversityBeijingChina
  25. 25.School of Physics and TechnologyWuhan UniversityWuhanChina
  26. 26.Key Laboratory for Particle Astrophysics, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  27. 27.Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina
  28. 28.Department of PhysicsThe University of HongkongHong KongChina
  29. 29.National Astronomical ObservatoriesChinese Academy of SciencesBeijingChina
  30. 30.State Key Laboratory of Lunar and Planetary SciencesMacau University of Science and TechnologyMacauChina
  31. 31.Shanghai Astronomical ObservatoryChinese Academy of SciencesShanghaiChina
  32. 32.Institute of AstrophysicsCentral China Normal UniversityWuhanChina
  33. 33.Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University)Ministry of EducationNanjingChina
  34. 34.Department of Physics and AstronomyUniversity of NevadaLas VegasUSA

Personalised recommendations