Designing large pixelated CdTe detection planes for hard X-ray transients detection

  • Karine LacombeEmail author
  • Carine Amoros
  • Jean-Luc Atteia
  • Armelle Bajat
  • Laurent Bouchet
  • Jean-Pascal Dezalay
  • Philippe Guillemot
  • Baptiste Houret
  • François Lebrun
  • Sujay Mate
  • Roger Pons
  • Henri Triou
  • Vincent Waegebaert
Original Article


In this paper, we discuss the need for very large detection planes for the detection of hard X-ray transients in the multi-messenger era, started with the quasi-simultaneous detection of GRB 170817A by Fermi/GBM and INTEGRAL/SPI and the gravitational waves event GW 170817, detected by the LVC collaboration. After pointing that current and future instruments gain in the number of GRBs thanks to their larger field of view rather than to their larger effective area, we address various problems associated with the realization of very large detection planes (≥ 1m2). Based on our experience withSVOM/ECLAIRs, we demonstrate that CdTe detectors are well suited for this task. We conclude with a discussion of some key parameters that must be taken into account in the realization of instruments based on these detectors. We hope that this paper will contribute to promote the construction of large area wide-field hard X-ray monitors that will be crucially needed in the next decade.


Gamma-ray instrumentation Gamma-ray bursts X-ray transients 



  1. 1.
    Abbott, B.P., Abbott, R., Abbott, T.D., et al.: Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Relativ. 21, 3 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    Abbott, B.P., Abbott, R., Abbott, T.D., et al.: ApJ, 848 (2017)Google Scholar
  3. 3.
    Agrawal, P.C.: ASTROSAT: A Multiwavelength Indian Astronomy Satellite. Prog. Theor. Phys. Suppl. 155, 305 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Amati, L., Guidorzi, C., Frontera, F., et al.: Measuring the cosmological parameters with the Ep,i-Eiso correlation of gamma-ray bursts. MNRAS 391, 577 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Amati, L., O’Brien, P., Götz, D., et al.: The THESEUS space mission concept: science case, design and expected performances. Adv. Space Res. 62, 191 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    Amoros, C., Houret, B., Lacombe, K., et al.: Status of technological development on ECLAIRs camera onboard the SVOM space mission. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 10699, 106995K (2018)Google Scholar
  7. 7.
    Barthelmy, S.D., Barbier, L.M., Cummings, J.R., et al.: The Burst Alert Telescope (BAT) on the SWIFT Midex Mission. Space Sci. Rev 120, 143 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Bhalerao, V., Bhattacharya, D., Vibhute, A., et al.: The Cadmium Zinc Telluride Imager on AstroSat. J. Astrophys. Astron. 38, 31 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    Buzhan, P., Dolgoshein, B., Filatov, L., et al.: Silicon photomultiplier and its possible applications. Nucl. Inst. Methods Phys. Res. A 504, 48 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    Campana, R., Fuschino, F., Labanti, C., et al.: arXiv:1802.01674 (2018)
  11. 11.
    Campana, S., Mangano, V., Blustin, A.J., et al.: The association of GRB 060218 with a supernova and the evolution of the shock wave. Nature 442, 1008 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Cavallari, E., Frontera, F.: Hard X-Ray/Soft gamma-ray experiments and missions: overview and prospects. Space Sci. Rev. 212, 429 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Cooray, A.: Extragalactic background light measurements and applications. R. Soc. Open Sci. 3, 150555 (2016)CrossRefGoogle Scholar
  14. 14.
    Ehanno, M., Amoros, C., Barret, D., et al.: Development of a modular CdTe detector plane for gamma-ray burst detection below 100 keV. Adv. Space Res. 40, 1259 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Feroci, M., Stella, L., van der Klis, M., et al.: The large observatory for X-ray timing (LOFT). Exp. Astron. 34, 415 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Fong, W., Berger, E., Margutti, R., Zauderer, B.A.: A decade of short-duration gamma-ray burst broadband afterglows: energetics, circumburst densities, and jet opening angles. ApJ 815, 102 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Galama, T.J., Vreeswijk, P.M., van Paradijs, J., et al.: An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 395, 670 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    Gehrels, N., Chincarini, G., Giommi, P., et al.: The swift gamma-ray burst mission. ApJ 611, 1005 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    Gevin, O., Baron, P., Coppolani, X., et al.: IDeF-X ECLAIRs: A CMOS ASIC for the readout of CdTe and CdZnTe detectors for high resolution spectroscopy. IEEE Trans. Nucl. Sci. 56, 2351 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Godet, O., Nasser, G., Atteia, J.-L., et al.: The x-/gamma-ray camera ECLAIRs for the gamma-ray burst mission SVOM. In: Proc. SPIE, Vol. 9144, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, 914424 (2014)Google Scholar
  21. 21.
    Goldstein, A., Veres, P., Burns, E., et al.: ApJ, 848 (2017)Google Scholar
  22. 22.
    Götz, D.: arXiv:1302.4847 (2013)
  23. 23.
    Hernanz, M., Brandt, S., Feroci, M., et al.: arXiv:1807.09330 (2018)
  24. 24.
    Ishikawa, S.-N., Watanabe, S., Fukuyama, T., et al.: Development of double-sided CdTe strip detectors for γ-ray imaging and spectroscopy. Jpn. J. Appl. Phys. 49, 116702 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Labanti, C., Di Cocco, G., Ferro, G., et al.: The Ibis-Picsit detector onboard integral. A&A 411, L149 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    Lacombe, K., Dezalay, J.P., Houret, B., et al.: Development of a 32-detector CdTe matrix for the SVOM ECLAIRs x/gamma camera: tests results of first flight models. In: Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, Vol. 9905, 99050J (2016)Google Scholar
  27. 27.
    Lacombe, K., Dezalay, J.P., Houret, B., et al.: Spectral performance of ECLAIRs flight detectors on SVOM mission. Astropart. Phys. 103, 131 (2018)ADSCrossRefGoogle Scholar
  28. 28.
    Lacombe, K., Nasser, G., Amoros, C., et al.: Development of a 32-detector CdTe matrix for the SVOM ECLAIRs X/Gamma camera: Preliminary results. Nucl. Inst. Methods Phys. Res. A 732, 122 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Lacombe, K., Pons, R., Amoros, C., et al.: ECLAIRs detection plane: current state of development. In: Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, Vol. 9144, 914451 (2014)Google Scholar
  30. 30.
    Lebrun, F., Leray, J.P., Lavocat, P., et al.: ISGRI: The INTEGRAL Soft Gamma-Ray Imager. A&A 411, L141 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    Liang, E., Zhang, B., Virgili, F., Dai, Z.G.: Low-Luminosity Gamma-Ray Bursts as a Unique Population: Luminosity Function, Local Rate, and Beaming Factor. ApJ 662, 1111 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    Lien, A., Sakamoto, T., Gehrels, N., et al.: Probing the cosmic gamma-ray burst rate with trigger simulations of the swift burst alert telescope. ApJ 783, 24 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    Maselli, A., Melandri, A., Nava, L., et al.: GRB 130427A: A Nearby Ordinary Monster. Science 343, 48 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Nasser, G., Godet, O., Atteia, J.L., et al.: The use of Schottky CdTe detectors for high-energy astronomy: application to the detection plane of the instrument SVOM/ECLAIRs. In: Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, Vol. 9144, 91443X (2014)Google Scholar
  35. 35.
    Paul, J., Mandrou, P., Ballet, J., et al.: SIGMA: The hard X-ray and soft gamma-ray telescope on board the GRANAT space observatory. Adv. Space Res. 11, 289 (1991)ADSCrossRefGoogle Scholar
  36. 36.
    Pian, E., Mazzali, P.A., Masetti, N., et al.: An optical supernova associated with the X-ray flash XRF 060218. Nature 442, 1011 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    Remoué, N., Barret, D., Mandrou, P., et al.: DPIX, an assembly of 6400 CdTe detectors for gamma-ray bursts detection with ECLAIRs. In: High Energy, Optical, and Infrared Detectors for Astronomy III, Vol. 7021, 702126 (2008)Google Scholar
  38. 38.
    Remoué, N., Lacombe, K., Amoros, C., et al.: Selection of CdTe detectors for the detection plane of the ECLAIRs gamma-ray burst detector. Nucl. Inst. Methods Phys. Res. A 610, 287 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    Singh, K.P., Tandon, S.N., Agrawal, P.C., et al.: ASTROSAT mission. In: Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, Vol. 9144, 91441S (2014)Google Scholar
  40. 40.
    Soderberg, A.M., Kulkarni, S.R., Nakar, E., et al.: Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions. Nature 442, 1014 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    Stratta, G., Ciolfi, R., Amati, L., et al.: THESEUS: A key space mission concept for Multi-Messenger Astrophysics. Adv. Space Res. 62, 662 (2018)ADSCrossRefGoogle Scholar
  42. 42.
    Türler, M., Chernyakova, M., Courvoisier, T.J.-L., et al.: INTEGRAL hard X-ray spectra of the cosmic X-ray background and Galactic ridge emission. A&A 512, A49 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    Ubertini, P., Lebrun, F., Di Cocco, G., et al.: IBIS: The Imager on-board INTEGRAL. A&A 411, L131 (2003)ADSCrossRefGoogle Scholar
  44. 44.
    Vadawale, S.V., Rao, A.R., Bhattacharya, D., et al.: In-orbit performance AstroSat CZTI. In: Proc. SPIE, Vol. 9905, Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, 99051G (2016)Google Scholar
  45. 45.
    Vedrenne, G., Roques, J.-P., Schönfelder, V., et al.: SPI: The spectrometer aboard INTEGRAL. A&A 411, L63 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    Wei, J., Cordier, B., et al.: The deep and transient universe in the svom era: new challenges and opportunities - scientific prospects of the SVOM mission, arXiv:1610.06892v1 [astro-ph.IM] (2016)
  47. 47.
    Winkler, C., Courvoisier, T.J.-L., Di Cocco, G., et al.: The INTEGRAL mission. A&A 411, L1 (2003)ADSCrossRefGoogle Scholar
  48. 48.
    Yuan, W., Zhang, C., Ling, Z., et al.: Exploring transient X-ray sky with Einstein Probe. In: The X-ray Universe 2017, ed. J.-U. Ness & S. Migliari, 240 (2017)Google Scholar
  49. 49.
    Zhang, S.N., Feroci, M., Santangelo, A., et al.: eXTP: Enhanced X-ray Timing and Polarization mission. In: Proc. SPIE, Vol. 9905, Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, 99051Q (2016)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Karine Lacombe
    • 1
    Email author
  • Carine Amoros
    • 1
  • Jean-Luc Atteia
    • 1
  • Armelle Bajat
    • 2
  • Laurent Bouchet
    • 1
  • Jean-Pascal Dezalay
    • 1
  • Philippe Guillemot
    • 3
  • Baptiste Houret
    • 1
  • François Lebrun
    • 4
  • Sujay Mate
    • 1
  • Roger Pons
    • 1
  • Henri Triou
    • 5
  • Vincent Waegebaert
    • 1
  1. 1.IRAP, Université de Toulouse, CNES, CNRS, UPSToulouseFrance
  2. 2.Institute of Physics of the Czech Academy of SciencesPragueCzech Republic
  3. 3.CNESToulouseFrance
  4. 4.APC, CNRSParisFrance
  5. 5.CEASaclayFrance

Personalised recommendations