Experimental Astronomy

, Volume 46, Issue 3, pp 543–560 | Cite as

Space-based infrared interferometry to study exoplanetary atmospheres

  • D. DefrèreEmail author
  • A. Léger
  • O. Absil
  • C. Beichman
  • B. Biller
  • W. C. Danchi
  • K. Ergenzinger
  • C. Eiroa
  • S. Ertel
  • M. Fridlund
  • A. García Muñoz
  • M. Gillon
  • A. Glasse
  • M. Godolt
  • J. L. Grenfell
  • S. Kraus
  • L. Labadie
  • S. Lacour
  • R. Liseau
  • G. Martin
  • B. Mennesson
  • G. Micela
  • S. Minardi
  • S. P. Quanz
  • H. Rauer
  • S. Rinehart
  • N. C. Santos
  • F. Selsis
  • J. Surdej
  • F. Tian
  • E. Villaver
  • P. J. Wheatley
  • M. Wyatt
Original Article
Part of the following topical collections:
  1. Future of Optical-infrared Interferometry in Europe


The quest for other habitable worlds and the search for life among them are major goals of modern astronomy. One way to make progress towards these goals is to obtain high-quality spectra of a large number of exoplanets over a broad range of wavelengths. While concepts currently investigated in the United States are focused on visible/NIR wavelengths, where the planets are probed in reflected light, a compelling alternative to characterize planetary atmospheres is the mid-infrared waveband (5–20 μm). Indeed, mid-infrared observations provide key information on the presence of an atmosphere, the surface conditions (e.g., temperature, pressure, habitability), and the atmospheric composition in important species such as H2O, CO2, O3, CH4, and N2O. This information is essential to investigate the potential habitability of exoplanets and to make progress towards the search for life in the Universe. Obtaining high-quality mid-infrared spectra of exoplanets from the ground is however extremely challenging due to the overwhelming brightness and turbulence of the Earth’s atmosphere. In this paper, we present a concept of space-based mid-infrared interferometer that can tackle this observing challenge and discuss the main technological developments required to launch such a sophisticated instrument.


Space interferometer Infrared astronomy Darwin TPF-I Exoplanet Habitability Bio-signatures 



This work was partly funded by the European Research Council under the European Union’s Seventh Framework Program (ERC Grant Agreement n. 337569) and by the French Community of Belgium through an ARC grant for Concerted Research Action. DD and OA acknowledge funding from the FRS-FNRS. Some of research described in this publication was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Part of this work has been carried out within the frame of the National Center for Competence in Research PlanetS supported by the Swiss National Science Foundation. SPQ acknowledges the financial support of the SNSF. NCS was supported by Fundação para a Ciência e a Tecnologia (FCT, Portugal) through national funds and by FEDER through COMPETE2020 in the context of the projects and grants reference UID/FIS/04434/2013 & POCI-01-0145-FEDER-007672, PTDC/FIS-AST/1526/2014 & POCI-01-0145-FEDER-016886, and IF/00169/2012/CP0150/CT0002. SL acknowledges support from ERC Starting Grant n. 639248. SK acknowledges support from an STFC Rutherford Fellowship (ST/J004030/1) and ERC Starting Grant n. 639889.


  1. 1.
    Airapetian, V.S., Jackman, C.H., Mlynczak, M., Danchi, W., Hunt, L.: Atmospheric beacons of life from exoplanets around g and k stars. Sci. Rep. 7, 14,141 (2017). CrossRefGoogle Scholar
  2. 2.
    Angel, J.R., Burge, J.H., Woolf, N.J.: Detection and spectroscopy of exo-planets like Earth. In: Ardeberg, A L (ed.) Optical Telescopes of Today and Tomorrow, Proceedings SPIE, vol. 2871, pp. 516–519 (1997),
  3. 3.
    Angel, J.R.P., Woolf, N.J.: An imaging nulling interferometer to study extrasolar planets. ApJ 475, 373–379 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    Angel, J.R.P., Cheng, A.Y.S., Woolf, N.J.: A space telescope for infrared spectroscopy of earth-like planets. Nature 322, 341–343 (1986). ADSCrossRefGoogle Scholar
  5. 5.
    Beichman, C., Benneke, B., Knutson, H., Smith, R., Lagage, P.O., Dressing, C., Latham, D., Lunine, J., Birkmann, S., Ferruit, P., Giardino, G., Kempton, E., Carey, S., Krick, J., Deroo, P.D., Mandell, A., Ressler, M.E., Shporer, A., Swain, M., Vasisht, G., Ricker, G., Bouwman, J., Crossfield, I., Greene, T., Howell, S., Christiansen, J., Ciardi, D., Clampin, M., Greenhouse, M., Sozzetti, A., Goudfrooij, P., Hines, D., Keyes, T., Lee, J., McCullough, P., Robberto, M., Stansberry, J., Valenti, J., Rieke, M., Rieke, G., Fortney, J., Bean, J., Kreidberg, L., Ehrenreich, D., Deming, D., Albert, L., Doyon, R., Sing, D.: Observations of transiting exoplanets with the James Webb Space Telescope (JWST). PASP 126, 1134 (2014). ADSCrossRefGoogle Scholar
  6. 6.
    Boccaletti, A., Lagage, P.O., Baudoz, P., Beichman, C., Bouchet, P., Cavarroc, C., Dubreuil, D., Glasse, A., Glauser, A.M., Hines, D.C., Lajoie, C.P., Lebreton, J., Perrin, M.D., Pueyo, L., Reess, J.M., Rieke, G.H., Ronayette, S., Rouan, D., Soummer, R., Wright, G.S.: The mid-infrared instrument for the James Webb space telescope, V: Predicted performance of the MIRI coronagraphs. PASP 127, 633–645 (2015). arXiv:1508.02352 ADSCrossRefGoogle Scholar
  7. 7.
    Bolmont, E., Libert, A.S., Leconte, J., Selsis, F.: Habitability of planets on eccentric orbits: limits of the mean flux approximation. A&A 591, A106 (2016). arXiv:1604.06091 ADSCrossRefGoogle Scholar
  8. 8.
    Bracewell, R.N.: Detecting nonsolar planets by spinning infrared interferometer. Nature 274, 780 (1978). ADSCrossRefGoogle Scholar
  9. 9.
    Brandl, B.R., Feldt, M., Glasse, A., Guedel, M., Heikamp, S., Kenworthy, M., Lenzen, R., Meyer, M.R., Molster, F., Paalvast, S., Pantin, E.J., Quanz, S.P., Schmalzl, E., Stuik, R., Venema, L., Waelkens, C.: METIS: the mid-infrared E-ELT imager and spectrograph. In: Ground-based and Airborne Instrumentation for Astronomy V, Proc. SPIE, vol. 9147, pp. 914721. arXiv:1409.3087 (2014)
  10. 10.
    Brandl, B.R., Agocs, T., Aitink-Kroes, G., Bertram, T., Bettonvil, F., van Boekel, R., Boulade, O., Feldt, M., Glasse, A., Glauser, A., Godel, M., Hurtado, N., Jager, R., Kenworthy, M.A., Mach, M., Meisner, J., Meyer, M., Pantin, E., Quanz, S., Schmid, H.M., Stuik, R., Veninga, A., Waelkens, C.: (2016)
  11. 11.
    Catling, D.C., Krissansen-Totton, J., Kiang, N.Y., Crisp, D., Robinson, T.D., DasSarma, S., Rushby, A.J., Del Genio, A., Bains, W., Domagal-Goldman, S.: Exoplanet biosignatures: a framework for their assessment. Astrobiology 18, 709–738 (2018). arXiv:1705.06381 ADSCrossRefGoogle Scholar
  12. 12.
    Cockell, C.S., Léger, A, Fridlund, M., Herbst, T.M., Kaltenegger, L., Absil, O., Beichman, C., Benz, W., Blanc, M., Brack, A., Chelli, A., Colangeli, L., Cottin, H., Coudé du Foresto, V, Danchi, W.C., Defrère, D, den Herder, J.W., Eiroa, C., Greaves, J., Henning, T., Johnston, K.J., Jones, H., Labadie, L., Lammer, H., Launhardt, R., Lawson, P., Lay, O.P., LeDuigou, J.M., Liseau, R., Malbet, F., Martin, S.R., Mawet, D., Mourard, D., Moutou, C., Mugnier, L.M., Ollivier, M., Paresce, F., Quirrenbach, A., Rabbia, Y.D., Raven, J.A., Rottgering, H.J.A., Rouan, D., Santos, N.C., Selsis, F., Serabyn, E., Shibai, H., Tamura, M., Thiébaut, E, Westall, F., White, G.J.: Darwin-a mission to detect and search for life on extrasolar planets. Astrobiology 9, 1–22 (2009). arXiv:0805.1873 ADSCrossRefGoogle Scholar
  13. 13.
    Colavita, M.M., Serabyn, E., Millan-Gabet, R., Koresko, C.D., Akeson, R.L., Booth, A.J., Mennesson, B.P., Ragland, S.D., Appleby, E.C., Berkey, B.C., Cooper, A., Crawford, S.L., Creech-Eakman, M.J., Dahl, W., Felizardo, C., Garcia-Gathright, J.I., Gathright, J.T., Herstein, J.S., Hovland, E.E., Hrynevych, M.A., Ligon, E.R., Medeiros, D.W., Moore, J.D., Morrison, D., Paine, C.G., Palmer, D.L., Panteleeva, T., Smith, B., Swain, M.R., Smythe, R.F., Summers, K.R., Tsubota, K., Tyau, C., Vasisht, G., Wetherell, E., Wizinowich, P.L., Woillez, J.M.: Keck interferometer nuller data reduction and on-sky performance. PASP 121, 1120–1138 (2009). ADSCrossRefGoogle Scholar
  14. 14.
    Cowan, N.B., Voigt, A., Abbot, D.S.: Thermal phases of earth-like planets: estimating thermal inertia from eccentricity, obliquity, and diurnal forcing. ApJ 757, 80 (2012). arXiv:1205.5034 ADSCrossRefGoogle Scholar
  15. 15.
    Crossfield, I.J.M., Hansen, B.M.S., Harrington, J., Cho, J.Y.K., Deming, D., Menou, K., Seager, S.: A New 24 μm Phase Curve for υ Andromedae b. ApJ 723, 1436–1446 (2010). arXiv:1008.0393 ADSCrossRefGoogle Scholar
  16. 16.
    D’Amico, S., Ardaens, J.S., Larsson, R.: Spaceborne autonomous formation-flying experiment on the PRISMA mission. J. Guid. Control. Dyn. 35, 834–850 (2012). ADSCrossRefGoogle Scholar
  17. 17.
    Danchi, W., Bailey, V., Bryden, G., Defrere, D., Haniff, C., Hinz, P., Kennedy, G., Mennesson, G., Millan-Gabet, R., Rieke, G., Roberge, A., Serabyn, E., Skemer, A., Stapelfeldt, K., Weinberger, A., Wyatt, M.: The LBTI hunt for observable signatures of terrestrial systems (HOSTS) survey: a key NASA science program on the road to exoplanet imaging missions. In: Optical and Infrared Interferometry IV, Proc. SPIE, vol. 9146, pp. 914607. (2014)
  18. 18.
    Danchi, W.C., Barry, R.K., Lawson, P.R., Traub, W.A., Unwin, S.: The Fourier-Kelvin Stellar Interferometer (FKSI): a review, progress report, and update. In: Optical and Infrared Interferometry, Proc. SPIE, vol. 7013, p. 70132Q. (2008)
  19. 19.
    Defrère, D, Absil, O., den Hartog, R., Hanot, C., Stark, C.: Nulling interferometry: impact of exozodiacal clouds on the performance of future life-finding space missions. A&A 509, A9 (2010). arXiv:0910.3486 ADSCrossRefGoogle Scholar
  20. 20.
    Defrère, D, Hinz, P.M., Skemer, A.J., Kennedy, G.M., Bailey, V.P., Hoffmann, W.F., Mennesson, B., Millan-Gabet, R., Danchi, W.C., Absil, O., Arbo, P., Beichman, C., Brusa, G., Bryden, G., Downey, E.C., Durney, O., Esposito, S., Gaspar, A., Grenz, P., Haniff, C., Hill, J.M., Lebreton, J., Leisenring, J.M., Males, J.R., Marion, L., McMahon, T.J., Montoya, M., Morzinski, K.M., Pinna, E., Puglisi, A., Rieke, G., Roberge, A., Serabyn, E., Sosa, R., Stapeldfeldt, K., Su, K., Vaitheeswaran, V., Vaz, A., Weinberger, A.J., Wyatt, M.C.: First-light LBT nulling interferometric observations: warm exozodiacal dust resolved within a few AU of η Crv. ApJ 799, 42 (2015). arXiv:1501.04144 ADSCrossRefGoogle Scholar
  21. 21.
    Defrère, D, Hinz, P.M., Mennesson, B., Hoffmann, W.F., Millan-Gabet, R., Skemer, A.J., Bailey, V., Danchi, W.C., Downey, E.C., Durney, O., Grenz, P., Hill, J.M., McMahon, T.J., Montoya, M., Spalding, E., Vaz, A., Absil, O., Arbo, P., Bailey, H., Brusa, G., Bryden, G., Esposito, S., Gaspar, A., Haniff, C.A., Kennedy, G.M., Leisenring, J.M., Marion, L., Nowak, M., Pinna, E., Powell, K., Puglisi, A., Rieke, G., Roberge, A., Serabyn, E., Sosa, R., Stapeldfeldt, K., Su, K., Weinberger, A.J., Wyatt, M.C.: Nulling data reduction and on-sky performance of the large binocular telescope interferometer. ApJ 824, 66 (2016). arXiv:1601.06866 ADSCrossRefGoogle Scholar
  22. 22.
    Defrère, D, Absil, O., Berger, J.P., Boulet, T., Danchi, W.C., Ertel, S., Gallenne, A., Hénault, F, Hinz, P., Huby, E., Ireland, M., Kraus, S., Labadie, L., Le Bouquin, J.B., Martin, G., Matter, A., Mérand, A, Mennesson, B., Minardi, S., Monnier, J.D., Norris, B., de Xivry, G.O., Pedretti, E., Pott, J.U., Reggiani, M., Serabyn, E., Surdej, J., Tristram, K.R.W., Woillez, J.: The path towards high-contrast imaging with the vlti: the hi-5 project. Exp. Astron. (2018)
  23. 23.
    Defrère, D, Léger, A, Absil, O., Garcia Munoz, A., Grenfell, J.L., Godolt, M., Loicq, J., Kammerer, J., Quanz, S., Rauer, H., Schifano, L., Tian, F.: Characterizing the atmosphere of Proxima b with a space-based mid-infrared nulling interferometer. arXiv:1807.09996 (2018)
  24. 24.
    Des Marais, D.J., Harwit MO, Jucks, K.W., Kasting, J.F., Lin, D.N.C., Lunine, J.I., Schneider, J., Seager, S., Traub, W.A., Woolf, N.J.: Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. Astrobiology 2, 153–181 (2002). ADSCrossRefGoogle Scholar
  25. 25.
    Eisenhauer, F., Perrin, G., Brandner, W., Straubmeier, C., Perraut, K., Amorim, A., Schöller, M, Gillessen, S., Kervella, P., Benisty, M., Araujo-Hauck, C., Jocou, L., Lima, J., Jakob, G., Haug, M., Clénet, Y, Henning, T., Eckart, A., Berger, J.P., Garcia, P., Abuter, R., Kellner, S., Paumard, T., Hippler, S., Fischer, S., Moulin, T., Villate, J., Avila, G., Gräter, A, Lacour, S., Huber, A., Wiest, M., Nolot, A., Carvas, P., Dorn, R., Pfuhl, O., Gendron, E., Kendrew, S., Yazici, S., Anton, S., Jung, Y., Thiel, M., Choquet, É, Klein, R., Teixeira, P., Gitton, P., Moch, D., Vincent, F., Kudryavtseva, N., Ströbele, S, Sturm, S., Fédou, P, Lenzen, R., Jolley, P., Kister, C., Lapeyrère, V, Naranjo, V., Lucuix, C., Hofmann, R., Chapron, F., Neumann, U., Mehrgan, L., Hans, O., Rousset, G., Ramos, J., Suarez, M., Lederer, R., Reess, J.M., Rohloff, R.R., Haguenauer, P., Bartko, H., Sevin, A., Wagner, K., Lizon, J.L., Rabien, S., Collin, C., Finger, G., Davies, R., Rouan, D., Wittkowski, M., Dodds-Eden, K., Ziegler, D., Cassaing, F., Bonnet, H., Casali, M., Genzel, R., Lena, P.: GRAVITY: observing the universe in motion. The Messenger 143, 16–24 (2011)ADSGoogle Scholar
  26. 26.
    Errmann, R., Minardi, S., Labadie, L., Muthusubramanian, B., Dreisow, F., Nolte, S., Pertsch, T.: Interferometric nulling of four channels with integrated optics. Appl. Opt. 54, 7449 (2015). ADSCrossRefGoogle Scholar
  27. 27.
    Ertel, S., Defrère, D, Hinz, P., Mennesson, B., Kennedy, G.M., Danchi, W.C., Gelino, C., Hill, J.M., Hoffmann, W.F., Rieke, G., Shannon, A., Spalding, E., Stone, J.M., Vaz, A., Weinberger, A.J., Willems, P., Absil, O., Arbo, P., Bailey, V.P., Beichman, C., Bryden, G., Downey, E.C., Durney, O., Esposito, S., Gaspar, A., Grenz, P., Haniff, C.A., Leisenring, J.M., Marion, L., McMahon, T.J., Millan-Gabet, R., Montoya, M., Morzinski, K.M., Pinna, E., Power, J., Puglisi, A., Roberge, A., Serabyn, E., Skemer, A.J., Stapelfeldt, K., Su, K.Y.L., Vaitheeswaran, V., Wyatt, M.C.: The HOSTS survey—exozodiacal dust measurements for 30 stars. AJ 155, 194 (2018a). arXiv:1803.11265 ADSCrossRefGoogle Scholar
  28. 28.
    Ertel, S., Kennedy, G.M., Defrère, D, Hinz, P., Shannon, A.B., Mennesson, B., Danchi, W.C., Gelino, C., Hill, J.M., Hoffmann, W.F., Rieke, G., Spalding, E., Stone, J.M., Vaz, A., Weinberger, A.J., Willems, P., Absil, O., Arbo, P., Bailey, V.P., Beichman, C., Bryden, G., Downey, E.C., Durney, O., Esposito, S., Gaspar, A., Grenz, P., Haniff, C.A., Leisenring, J.M., Marion, L., McMahon, T.J., Millan-Gabet, R., Montoya, M., Morzinski, K.M., Pinna, E., Power, J., Puglisi, A., Roberge, A., Serabyn, E., Skemer, A.J., Stapelfeldt, K., Su, K.Y.L., Vaitheeswaran, V., Wyatt, M.C.: The HOSTS Survey for Exozodiacal Dust: preliminary results and future prospects. arXiv:1807.08209 (2018b)
  29. 29.
    Fridlund, M., Eiroa, C., Henning, T., Herbst, T., Lammer, H., Léger, A, Liseau, R., Paresce, F., Penny, A., Quirrenbach, A., Röttgering, H, Selsis, F., White, G.J., Absil, O., Defrère, D, Schneider, J., Tinetti, G., Karlsson, A., Gondoin, P., den Hartog, R., D’Arcio, L., Stankov, A.M., Kilter, M., Erd, C., Beichman, C., Coulter, D., Danchi, W., Devirian, M., Johnston, K.J., Lawson, P., Lay, O.P., Lunine, J., Kaltenegger, L.: The search for worlds like our own. Astrobiology 10, 5–17 (2010). ADSCrossRefGoogle Scholar
  30. 30.
    Fujii, Y., Angerhausen, D., Deitrick, R., Domagal-Goldman, S., Grenfell, J.L., Hori, Y., Kane, S.R., Pallé, E, Rauer, H., Siegler, N., Stapelfeldt, K., Stevenson, K.B.: Exoplanet biosignatures: observational prospects. Astrobiology 18, 739–778 (2018). arXiv:1705.07098 ADSCrossRefGoogle Scholar
  31. 31.
    Hanot, C., Mennesson, B., Martin, S., Liewer, K., Loya, F., Mawet, D., Riaud, P., Absil, O., Serabyn, E.: Improving interferometric null depth measurements using statistical distributions: theory and first results with the Palomar Fiber Nuller. ApJ 729, 110 (2011). arXiv:1103.4719 ADSCrossRefGoogle Scholar
  32. 32.
    Hinz, P.M., Defrère, D, Skemer, A., Bailey, V., Stone, J., Spalding, E., Vaz, A., Pinna, E., Puglisi, A., Esposito, S., Montoya, M., Downey, E., Leisenring, J., Durney, O., Hoffmann, W., Hill, J., Millan-Gabet, R., Mennesson, B., Danchi, W., Morzinski, K., Grenz, P., Skrutskie, M., Ertel, S.: Overview of LBTI: a multipurpose facility for high spatial resolution observations. In: Optical and Infrared Interferometry and Imaging V, Proc SPIE, vol. 9907, p. 990704. (2016)
  33. 33.
    Jovanovic, N., Martinache, F., Guyon, O., Clergeon, C., Singh, G., Kudo, T., Garrel, V., Newman, K., Doughty, D., Lozi, J., Males, J., Minowa, Y., Hayano, Y., Takato, N., Morino, J., Kuhn, J., Serabyn, E., Norris, B., Tuthill, P., Schworer, G., Stewart, P., Close, L., Huby, E., Perrin, G., Lacour, S., Gauchet, L., Vievard, S., Murakami, N., Oshiyama, F., Baba, N., Matsuo, T., Nishikawa, J., Tamura, M., Lai, O., Marchis, F., Duchene, G., Kotani, T., Woillez, J.: The Subaru coronagraphic extreme adaptive optics system: enabling high-contrast imaging on solar-system scales. PASP 127, 890 (2015). arXiv:1507.00017 ADSCrossRefGoogle Scholar
  34. 34.
    Kaltenegger, L., Eiroa, C., Fridlund, C.V.M.: Target star catalogue for Darwin Nearby Stellar sample for a search for terrestrial planets. Ap&SS 326, 233–247 (2010). arXiv:0810.5138 ADSCrossRefGoogle Scholar
  35. 35.
    Kammerer, J., Quanz, S.P.: Simulating the exoplanet yield of a space-based MIR interferometer based on Kepler Statistics. arXiv:1707.06820(2017)
  36. 36.
    Karlsson, A.L., Wallner, O., Perdigues Armengol, J.M., Absil, O.: Three telescope nuller based on multibeam injection into single-mode waveguide. In: Traub WA (ed.) Proc. SPIE, vol. 5491, pp. 831–+ (2004)Google Scholar
  37. 37.
    Kiang, N.Y., Domagal-Goldman, S., Parenteau, M.N., Catling, D.C., Fujii, Y., Meadows, V.S., Schwieterman, E.W., Walker, S.I.: Exoplanet biosignatures: at the dawn of a new era of planetary observations. Astrobiology 18, 619–629 (2018). ADSCrossRefGoogle Scholar
  38. 38.
    Knutson, H.A., Charbonneau, D., Allen, L.E., Fortney, J.J., Agol, E., Cowan, N.B., Showman, A.P., Cooper, C.S., Megeath, S.T.: A map of the day-night contrast of the extrasolar planet HD 189733b. Nature 447, 183–186 (2007)., arXiv:0705.0993 ADSCrossRefGoogle Scholar
  39. 39.
    Ksendzov, A., Lay, O., Martin, S., Sanghera, J.S., Busse, L.E., Kim, W.H., Pureza, P.C., Nguyen, V.Q., Aggarwal, I.D.: Characterization of mid-infrared single mode fibers as modal filters. Appl. Opt. 46, 7957–7962 (2007). ADSCrossRefGoogle Scholar
  40. 40.
    Ksendzov, A., Lewi, T., Lay, O.P., Martin, S.R., Gappinger, R.O., Lawson, P.R., Peters, R.D., Shalem, S., Tsun, A., Katzir, A.: Modal filtering for midinfrared nulling interferometry using single mode silver halide fibers. Appl. Opt. 47, 5728 (2008). ADSCrossRefGoogle Scholar
  41. 41.
    Lawson, P.: Traub W, Earth-Like Exoplanets: The Science of NASA’s Navigator Program. JPL Publication (2006)Google Scholar
  42. 42.
    Lawson, P.R., Lay, O.P., Johnston, K.J., Beichman, C.A.: Terrestrial planet finder interferometer science working group report. NASA STI/Recon Technical Report N (2007)Google Scholar
  43. 43.
    Lay, O.P.: Systematic errors in nulling interferometers. Appl. Opt. 43, 6100–6123 (2004). ADSCrossRefGoogle Scholar
  44. 44.
    Le Bouquin, J.B., Berger, J.P., Lazareff, B., Zins, G., Haguenauer, P., Jocou, L., Kern, P., Millan-Gabet, R., Traub, W., Absil, O., Augereau, J.C., Benisty, M., Blind, N., Bonfils, X., Bourget, P., Delboulbe, A., Feautrier, P., Germain, M., Gitton, P., Gillier, D., Kiekebusch, M., Kluska, J., Knudstrup, J., Labeye, P., Lizon, J.L., Monin, J.L., Magnard, Y., Malbet, F., Maurel, D., Ménard, F, Micallef, M., Michaud, L., Montagnier, G., Morel, S., Moulin, T., Perraut, K., Popovic, D., Rabou, P., Rochat, S., Rojas, C., Roussel, F., Roux, A., Stadler, E., Stefl, S., Tatulli, E., Ventura, N.: PIONIER: a 4-telescope visitor instrument at VLTI. A&A 535, A67 (2011). arXiv:1109.1918 ADSCrossRefGoogle Scholar
  45. 45.
    Léger A, Mariotti, J.M., Mennesson, B., Ollivier, M., Puget, J.L., Rouan, D., Schneider, J.: The DARWIN project. Ap&SS 241, 135–146 (1996). ADSCrossRefGoogle Scholar
  46. 46.
    Léger, A, Fontecave, M., Labeyrie, A., Samuel, B., Demangeon, O., Valencia, D.: Is the presence of oxygen on an exoplanet a reliable biosignature? Astrobiology 11, 335–341 (2011). ADSCrossRefGoogle Scholar
  47. 47.
    Martin, S., Booth, A., Liewer, K., Raouf, N., Loya, F., Tang, H.: High performance testbed for four-beam infrared interferometric nulling and exoplanet detection. Appl. Opt. 51, 3907–3921 (2012). ADSCrossRefGoogle Scholar
  48. 48.
    Martin, S., Serabyn, G., Liewer, K., Mennesson, B.: Achromatic broadband nulling using a phase grating. Optica 4(1), 110–113 (2017).
  49. 49.
    Martin, S.R., Booth, A.J.: Demonstration of exoplanet detection using an infrared telescope array. A&A 520, A96 (2010). ADSCrossRefGoogle Scholar
  50. 50.
    Maurin, A.S., Selsis, F., Hersant, F., Belu, A.: Thermal phase curves of nontransiting terrestrial exoplanets. II. Characterizing airless planets. A&A 538, A95 (2012). arXiv:1110.3087 ADSCrossRefGoogle Scholar
  51. 51.
    Meadows, V.S., Reinhard, C.T., Arney, G.N., Parenteau, M.N., Schwieterman, E.W., Domagal-Goldman, S.D., Lincowski, A.P., Stapelfeldt, K.R., Rauer, H., DasSarma, S., Hegde, S., Narita, N., Deitrick, R., Lustig-Yaeger, J., Lyons, T.W., Siegler, N., Grenfell, J.L.: Exoplanet biosignatures: understanding oxygen as a biosignature in the context of its environment. Astrobiology 18, 630–662 (2018). arXiv:1705.07560 ADSCrossRefGoogle Scholar
  52. 52.
    Mennesson, B., Mariotti, J.M.: Array configurations for a space infrared nulling interferometer dedicated to the search for Earthlike extrasolar planets. Icarus 128, 202–212 (1997). ADSCrossRefGoogle Scholar
  53. 53.
    Mennesson, B., Ollivier, M., Ruilier, C.: Use of single-mode waveguides to correct the optical defects of a nulling interferometer. J. Opt. Soc. Am. A 19, 596–602 (2002). ADSCrossRefGoogle Scholar
  54. 54.
    Mennesson, B., Hanot, C., Serabyn, E., Liewer, K., Martin, S.R., Mawet, D.: High-contrast Stellar Observations within the diffraction limit at the Palomar Hale Telescope. ApJ 743, 178 (2011a). ADSCrossRefGoogle Scholar
  55. 55.
    Mennesson, B., Serabyn, E., Hanot, C., Martin, S.R., Liewer, K., Mawet, D.: New constraints on companions and dust within a few AU of Vega. ApJ 736, 14 (2011b). ADSCrossRefGoogle Scholar
  56. 56.
    Mennesson, B., Millan-Gabet, R., Serabyn, E., Colavita, M.M., Absil, O., Bryden, G., Wyatt, M., Danchi, W., Defrère, D, Doré, O, Hinz, P., Kuchner, M., Ragland, S., Scott, N., Stapelfeldt, K., Traub, W., Woillez, J.: Constraining the exozodiacal luminosity function of main-sequence stars: complete results from the Keck Nuller mid-infrared surveys. ApJ 797, 119 (2014). ADSCrossRefGoogle Scholar
  57. 57.
    Monnier, J.D., Ireland, M.J., Kraus, S., Baron, F., Creech-Eakman, M., Dong, R., Isella, A., Merand, A., Michael, E., Minardi, S., Mozurkewich, D., Petrov, R., Rinehart, S., ten Brummelaar, T., Vasisht, G., Wishnow, E., Young, J., Zhu, Z.: Architecture design study and technology road map for the Planet Formation Imager (PFI). In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Proceedings SPIE. arXiv:1608.00580, vol. 9907, p 99071O (2016)
  58. 58.
    Moskovitz, N.A., Gaidos, E., Williams, D.M.: The effect of lunarlike satellites on the orbital infrared light curves of Earth-analog planets. Astrobiology 9, 269–277 (2009). arXiv:0810.2069 ADSCrossRefGoogle Scholar
  59. 59.
    Ollivier, M., Absil, O., Allard, F., Berger, J.P., Bordé, P, Cassaing, F., Chazelas, B., Chelli, A., Chesneau, O., Coudé du Foresto V, Defrère, D, Duchon, P., Gabor, P., Gay, J., Herwats, E., Jacquinod, S., Kern, P., Kervella, P., Le Duigou, J.M., Léger, A, Lopez, B., Malbet, F., Mourard, D., Pelat, D., Perrin, G., Rabbia, Y., Rouan, D., Reiss, J.M., Rousset, G., Selsis, F., Stee, P., Surdej, J.: PEGASE, an infrared interferometer to study stellar environments and low mass companions around nearby stars. Exp. Astron. 23, 403–434 (2009). ADSCrossRefGoogle Scholar
  60. 60.
    Peters, R.D., Lay, O.P., Lawson, P.R.: Mid-infrared adaptive nulling for the detection of Earthlike exoplanets. PASP 122, 85–92 (2010). ADSCrossRefGoogle Scholar
  61. 61.
    Quanz, S.P., Crossfield, I., Meyer, M.R., Schmalzl, E., Held, J.: Direct detection of exoplanets in the 3-10 μm range with E-ELT/METIS. Int. J. Astrobiol. 14, 279–289 (2015). arXiv:1404.0831 CrossRefGoogle Scholar
  62. 62.
    Quanz, S.P., Kammerer, J., Defrère, D, Absil, O., Glauser, A.M., Kitzmann, D.: Exoplanet science with a space-based mid-infrared nulling interferometer. arXiv:1807.06088 (2018)
  63. 63.
    Rinehart, S.A., Savini, G., Holland, W., Absil, O., Defrère, D, Spencer, L., Leisawitz, D., Rizzo, M., Juanola-Paramon, R., Mozurkewich, D.: The path to interferometry in space. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Proceedings SPIE, vol. 9907, p. 99070S. (2016)
  64. 64.
    Schwieterman, E.W., Kiang, N.Y., Parenteau, M.N., Harman, C.E., DasSarma, S., Fisher, T.M., Arney, G.N., Hartnett, H.E., Reinhard, C.T., Olson, S.L., Meadows, V.S., Cockell, C.S., Walker, S.I., Grenfell, J.L., Hegde, S., Rugheimer, S., Hu, R., Lyons, T.W.: Exoplanet biosignatures: a review of remotely detectable signs of life. Astrobiology 18, 663–708 (2018). arXiv:1705.05791 ADSCrossRefGoogle Scholar
  65. 65.
    Seager, S., Bains, W., Petkowski, J.J.: Toward a list of molecules as potential biosignature gases for the search for life on exoplanets and applications to terrestrial biochemistry. Astrobiology 16, 465–485 (2016). ADSCrossRefGoogle Scholar
  66. 66.
    Selsis, F.: The atmosphere of terrestrial exoplanets: detection and characterization. In: Beaulieu J, Lecavelier Des Etangs A, Terquem, C (eds.) Extrasolar Planets: Today and Tomorrow, Astronomical Society of the Pacific Conference Series, vol. 321, p 170 (2004)Google Scholar
  67. 67.
    Selsis, F., Wordsworth, R.D., Forget, F.: Thermal phase curves of nontransiting terrestrial exoplanets. I. Characterizing atmospheres. A&A 532, A1 (2011). arXiv:1104.4763 ADSCrossRefGoogle Scholar
  68. 68.
    Selsis, F., Maurin, A.S., Hersant, F., Leconte, J., Bolmont, E., Raymond, S.N., Delbo’, M: The effect of rotation and tidal heating on the thermal lightcurves of super Mercuries. A&A 555, A51 (2013). arXiv:1305.3858 ADSCrossRefGoogle Scholar
  69. 69.
    Stevenson, K.B., Désert, J M, Line, M.R., Bean, J.L., Fortney, J.J., Showman, A.P., Kataria, T., Kreidberg, L., McCullough, P.R., Henry, G.W., Charbonneau, D., Burrows, A., Seager, S., Madhusudhan, N., Williamson, M.H., Homeier, D.: Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy. Science 346, 838–841 (2014). arXiv:1410.2241 ADSCrossRefGoogle Scholar
  70. 70.
    von Paris, P., Hedelt, P., Selsis, F., Schreier, F., Trautmann, T.: Characterization of potentially habitable planets: retrieval of atmospheric and planetary properties from emission spectra. A&A 551, A120 (2013). arXiv:1301.0217 ADSCrossRefGoogle Scholar
  71. 71.
    Wallner, O., Leeb, W.R., Winzer, P.J.: Minimum length of a single-mode fiber spatial filter. J. Opt. Soc. Am. A 19, 2445–2448 (2002). ADSCrossRefGoogle Scholar
  72. 72.
    Weber, V., Barillot, M., Haguenauer, P., Kern, P.Y., Schanen-Duport, I., Labeye, P.R., Pujol, L., Sodnik, Z.: Nulling interferometer based on an integrated optics combiner. In: Traub, W A (ed.) New Frontiers in Stellar Interferometry. Proceedings SPIE, vol. 5491, p 842 (2004)Google Scholar
  73. 73.
    Winn, J.N., Fabrycky, D.C.: The occurrence and architecture of exoplanetary systems. ARA&A 53, 409–447 (2015). arXiv:1410.4199 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • D. Defrère
    • 1
    Email author
  • A. Léger
    • 2
  • O. Absil
    • 1
  • C. Beichman
    • 3
  • B. Biller
    • 4
  • W. C. Danchi
    • 5
  • K. Ergenzinger
    • 6
  • C. Eiroa
    • 7
  • S. Ertel
    • 8
  • M. Fridlund
    • 9
    • 16
  • A. García Muñoz
    • 10
  • M. Gillon
    • 1
  • A. Glasse
    • 11
  • M. Godolt
    • 10
  • J. L. Grenfell
    • 12
  • S. Kraus
    • 13
  • L. Labadie
    • 14
  • S. Lacour
    • 15
  • R. Liseau
    • 16
  • G. Martin
    • 17
  • B. Mennesson
    • 18
  • G. Micela
    • 19
  • S. Minardi
    • 20
  • S. P. Quanz
    • 21
  • H. Rauer
    • 10
    • 12
  • S. Rinehart
    • 5
  • N. C. Santos
    • 22
    • 23
  • F. Selsis
    • 24
  • J. Surdej
    • 1
  • F. Tian
    • 25
  • E. Villaver
    • 7
  • P. J. Wheatley
    • 26
  • M. Wyatt
    • 27
  1. 1.Space Sciences, Technologies, Astrophysics Research (STAR) InstituteUniversity of LiègeLiègeBelgium
  2. 2.Institut d’Astrophysique SpatialeUniversité de Paris-SudOrsayFrance
  3. 3.NASA Exoplanet Science InstituteCalifornia Institute of TechnologyPasadenaUSA
  4. 4.Institute for AstronomyUniversity of EdinburghEdinburghUK
  5. 5.NASA Goddard Space Flight Center, ExoplanetsStellar Astrophysics LaboratoryGreenbeltUSA
  6. 6.Airbus Defence and Space GmbHKoblenzGermany
  7. 7.Departamento de Fisica TeoricaUniversidad Autonoma de MadridMadridSpain
  8. 8.Steward Observatory, Department of AstronomyUniversity of ArizonaTucsonUSA
  9. 9.Leiden ObservatoryUniversity of LeidenLeidenThe Netherlands
  10. 10.Technische Universität BerlinBerlinGermany
  11. 11.Astronomy Technology CentreEdinburghUK
  12. 12.Institute for Planetary ResearchGerman Aerospace CenterBerlinGermany
  13. 13.School of Physics and AstronomyUniversity of ExeterExeterUK
  14. 14.University of CologneCologneGermany
  15. 15.LESIA, Observatoire de ParisPSL Research UniversityMeudon CedexFrance
  16. 16.Department of Space, Earth and EnvironmentChalmers University of Technology, Onsala Space ObservatoryOnsalaSweden
  17. 17.Institut de Planétologie et d’astrophysique de GrenobleGrenobleFrance
  18. 18.Jet Propulsion LaboratoryPasadenaUSA
  19. 19.Osservatorio Astronomico di Palermo, INAFPalermoItaly
  20. 20.innoFSPECLeibniz-Institut für Astrophysik Potsdam (AIP)PotsdamGermany
  21. 21.ETH ZurichInstitute for Particle Physics and AstrophysicsZurichSwitzerland
  22. 22.Instituto de Astrofísica e Ciências do EspaçoUniversidade do Porto, CAUPPortoPortugal
  23. 23.Departamento de Física e Astronomia, Faculdade de CiênciasUniversidade do PortoPortoPortugal
  24. 24.University of BordeauxBordeauxFrance
  25. 25.Tsinghua UniversityBejingChina
  26. 26.Department of PhysicsUniversity of WarwickCoventryUK
  27. 27.Institute of AstronomyCambridgeUK

Personalised recommendations