Advertisement

Precipitable water vapor (PWV) estimations from the site of the Eastern Anatolia Observatory (DAG), a new astronomical observatory in Turkey

  • Sacit Özdemir
  • Cahit Yeşilyaprak
  • Bahadır Aktuğ
  • Derya Öztürk
  • Deniz Çoker
  • Recep Balbay
Original Article
  • 45 Downloads

Abstract

We present preliminary statistics on the precipitable water vapor (PWV) content over the Karakaya Hills in Erzurum city, where the largest optical and near-infrared astronomical telescope in Turkey will be operated. Since the observatory will observe in the near-infrared (NIR), it is intended to perform PWV measurements of the atmosphere above the site by using signal delays in Global Positioning System (GPS) communication. The analysis of the GPS data recorded on the summit for almost one year shows that the atmosphere over the site of the observatory, which has an altitude of 3170 m, has favorable conditions for NIR observations. From GPS measurements, we report that the site had an average PWV of 3.2 mm and a median PWV of 2.7 mm between October 6, 2016, and June 15, 2017. We also present the time dependency of the PWV content and the correlations between the amount of PWV and the other meteorological records gathered from radiosonde flights and ground-based measurements.

Keywords

Instrumentation Site testing Infrared PWV 

Notes

Acknowledgements

The Eastern Anatolia Observatory, DAG, is fully funded by the Ministry of Development of Turkey (Project ID: 2011K120230). This study was supported by TUBITAK, The Scientific and Technological Research Council of Turkey, under the contract number of 115F032. We thank Turkish State Meteorological Service for their supply of meteorological data recorded in Erzurum Province and all staff of Atatürk University, Astrophysics Research and Application Center (ATASAM) for providing infrastructure facilities. We also thank the anonymous referee for his/her valuable comments to improve the text.

References

  1. 1.
    Askne, J., Nordius, H.: Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci. 22, 379–386 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    Baudet, J., Jolissaint, L., Keskin, O., Yesilyaprak, C., Yerli, S.: Design of a derotator for the 4 m dag telescope. In: Ground-Based and Airborne Instrumentation for Astronomy VI, Proceedings SPIE, vol. 9908, p 99085L (2016)Google Scholar
  3. 3.
    Bevis, M., Businger, S., Herring, T., Rocken, C., Anthes, R., Ware, R.: Gps meteorology: remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res.-Atmos. 97, 15 (1992)CrossRefGoogle Scholar
  4. 4.
    Bevis, M., Businger, S., Chiswell, S., Herring, T., Anthes, R., Rocken, C., Ware, R.: Gps meteorology: mapping zenith wet delays onto precipitable water. J. Appl. Meteorol. 33, 379–386 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    Blewitt, G.: Gps data processing methodology: from theory to applications. In: Teunissen, P., Kleusberg, A. (eds.) GPS for Geodesy, pp 231–270. Springer, Berlin (1998)CrossRefGoogle Scholar
  6. 6.
    Bosilovich, M.G., Kennedy, J., Dee, D., Allan, R., O’Neill, A.: On the Reprocessing and Reanalysis of Observations for Climate, pp 51–71. Springer, Netherlands (2013)Google Scholar
  7. 7.
    Buck, A.: New equations for computing vapor pressure and enhancement factor. J. Appl. Meteorol. 20, 1527–1532 (1981)ADSCrossRefGoogle Scholar
  8. 8.
    Castro-Almazán, J., Muñoz-Tuñón, C., García-Lorenzo, B., Pérez-Jordán, G., Varela, A., Romero, I.: Precipitable water vapour at the canarian observatories (teide and roque de los muchachos) from routine Gps. In: Observatory Operations: Strategies, Processes, and Systems VI, Proceedings SPIE, vol. 9910, p 99100P (2016)Google Scholar
  9. 9.
    Chacón, A., Cuevas, O., Pozo, D., Marín, J., Oyanadel, A., Dougnac, C., Cortes, L., Illanes, L., Caneo, M., Curé, M., Sarazin, M., Kerber, F., Smette, A., Rabanus, D., Querel, R., Tompkins, G.: Measuring and forecasting of pwv above La Silla, Apex and Paranal observatories. In: Rev. Mex. of A.& A., Serie de Conferencias, vol. 41, pp 20–23 (2011)Google Scholar
  10. 10.
    Davis, J., Herring, T., Shapiro, I., Rogers, A., Elgered, G.: Geodesy by radio interferometry - effects of atmospheric modeling errors on estimates of baseline length. Radio Sci. 20, 1593–1607 (1985)ADSCrossRefGoogle Scholar
  11. 11.
    Dee, D., Fasullo, J., Shea, D., Walsh, J., NCAR-Staff (eds.) The climate data guide: Atmospheric reanalysis: overview and comparison tables. https://climatedataguide.ucar.edu/climate-data/atmospheric-reanalysis-overview-comparison-tables (2016). Accessed on 18 July 2018
  12. 12.
    Fujita, M., Kimura, F., Yoneyama, K., Yoshizaki, M.: Verification of precipitable water vapor estimated from shipborne gps measurements. Geophys. Res. Lett. 35, L13803 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    García-Lorenzo, B., Eff-Darwich, A., Castro-Almazán, J., Pinilla-Alonso, N., Muñoz-Tuñón, C., Rodríguez-Espinosa, J.M.: Infrared astronomical characteristics of the roque de los muchachos observatory: precipitable water vapour statistics. MNRAS 405, 2683–2696 (2010)ADSGoogle Scholar
  14. 14.
    Gleckler, P.J., Taylor, K.E., Doutriaux, C.: Performance metrics for climate model. J. Geophys. Res:Atm. 113(D6) (2008)Google Scholar
  15. 15.
    Goad, C., Goodman, L.: A modified tropospheric refraction correction model. In: Proceedings of the American Geophysical Union Annual Fall Meeting at CA, 12–17 December, p. 28 (1974)Google Scholar
  16. 16.
    Hopfield, H.: Two-quartic tropospheric refractivity profile for correcting satellite data. J. Geophys. Res. 74(18), 4487–4499 (1969)ADSCrossRefGoogle Scholar
  17. 17.
    Jolissaint, L., Keskin, O., Zago, L., Kaan Yerli, S., Yesilyaprak, C., Mudry, E., Lousberg, G.: The design of an adaptive optics telescope: the case of dag. In: Ground-Based and Airborne Telescopes VI, Proceedings SPIE, vol. 9906, p 99063J (2016)Google Scholar
  18. 18.
    Keskin, O., Yesilyaprak, C, Yerli, S, Zago, L, Jolissaint, L: Turkey’s next big science project: dag the 4 meter telescope. In: Ground-Based and Airborne Telescopes V, Proceedings SPIE, vol. 9145, p 914547 (2014)Google Scholar
  19. 19.
    Kidger, M., Rodríguez-espinosa, J., del Rosario, J., Trancho, G.: Water vapour monitoring at the roque de los muchachos observatory (1996–1998. New Astron. Rev. 42, 537–542 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    Kidston, J., Frierson, D.M.W., Renwick, J.A., Vallis, G.K.: Observations, simulations, and dynamics of jet stream variability and annular modes. J. Climate 23(23), 6186–6199 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Kravtsov, S., Wyatt, M.G., Curry, J.A., Tsonis, A.A.: Two contrasting views of multidecadal climate variability in the twentieth century. Geophys. Res. Lett. 41(19), 6881–6888 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Lan, Z., Zhang, B., Geng, Y.: Establishment and analysis of global gridded tm-ts relationship model. Geodesy and Geodynamics 7(2), 101–107 (2016)CrossRefGoogle Scholar
  23. 23.
    Leick, A., Rapoport, L., Tatarnikov, D.: GPS Satellite Surveying, 4th edn. Wiley, New York (2015)Google Scholar
  24. 24.
    Marín, J., Pozo, D., Curé, M.: Estimating and forecasting the precipitable water vapor from goes satellite data at high altitude sites. A&A 573, A41 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Moon, Y., Choi, K.H., Park, P.H.: Estimation of precipitable water vapor using the gps. Journal of Astronomy and Space Sciences 16, 61–68 (1999)ADSGoogle Scholar
  26. 26.
    Niell, A.: Global mapping functions for the atmosphere delay at radio wavelengths. J. Geophys. Res. 101, 3227–3246 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    Niell, A., Coster, A., Solheim, F., Mendes, V., Toor, P., Langley, R., Upham, C.: Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, gps, and vlbi. J. Atmos. Oceanic Tech. 18, 830 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    Okamura, O., Kimura, F.: Behavior of gps-derived precipitable water vapor in the mountain lee after the passage of a cold front. Geophys. Res. Lett. 30(14), 1746 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    Otárola, A., Travouillon, T., Schöck, M., Els, S., Riddle, R., Skidmore, W., Dahl, R., Naylor, D., Querel, R.: Thirty meter telescope site testing x: precipitable water vapor. PASP 122, 470 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Parker, W.: Reanalyses and observations: what’s the difference? Bull. Am. Meteorol. Soc. 97(9), 1565–1572 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    Peixoto, J., Oort, A.: The climatology of relative humidity in the atmosphere. J. Climate 9, 3443–3463 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    Pérez-Jordán, G., Castro-Almazán, J., Muñoz-Tuñón, C., Codina, B., Vernin, J.: Forecasting the precipitable water vapour content: validation for astronomical observatories using radiosoundings. MNRAS 452, 1992–2003 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    Pozo, D., Illanes, L., Caneo, M., Curé, M.: Pmv forecast validation at alma site. In: Rev. Mex. of A.& A., Serie de Conferencias, vol. 41, pp 55–58 (2011)Google Scholar
  34. 34.
    Rocken, C., Hove, T., Johnson, J., Solheim, F., Ware, R., Bevis, M., Chiswell, S., Businger, S.: Gps/storm-gps sensing of atmospheric water vapor for meteorology. J. Atmos. Oceanic Tech. 12, 468 (1995)ADSCrossRefGoogle Scholar
  35. 35.
    Saastamoinen, J.: Atmospheric correction for troposphere and stratosphere in radio ranging of satellites. In: Henriksen, S., Mancini, A., Chovitz, B. (eds.) The Use of Artificial Satellites for Geodesy, American Geophysical Union (AGU), vol. 15, p 247 (1972)Google Scholar
  36. 36.
    Santer, B.D., Wigley, T.M.L., Simmons, A.J., Kållberg, PW., Kelly, G.A., Uppala, S.M., Ammann, C., Boyle, J.S., Brüggemann, W., Doutriaux, C., Fiorino, M., Mears, C., Meehl, G.A., Sausen, R., Taylor, K.E., Washington, W.M., Wehner, M.F., Wentz, F.J.: Identification of anthropogenic climate change using a second-generation reanalysis. J. Geophys. Res.:Atm, 109(D21) (2004)CrossRefGoogle Scholar
  37. 37.
    Schmidt, G. Reanalyses ‘r’ us. http://www.realclimate.org/index.php/archives/2011/07/reanalyses-r-us/ (2011). Accessed on 18 July 2018
  38. 38.
    Seidel, D., Sun, B., Pettey, M., Reale, A.: Global radiosonde balloon drift statistics. J. Geophys. Res.:Atm. 116(D7) (2011)Google Scholar
  39. 39.
    Voziakova, O.V.: Atmospheric transparency over mount shatdzhatmaz in the optical and near-infrared ranges. Astron. Lett. 38, 271–279 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    Yao, Y., Zhang, B., Xu, C., Chen, J.J.: Analysis of the global tm-ts correlation and establishment of the latitude-related linear model. Chin. Sci. Bull. Papers 59(19), 2340–2347 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    Yuan, Y., Zhang, K., Rohm, W., Choy, S., Norman, R., Wang, C.: Real-time retrieval of precipitable water vapor from gps precise point positioning. J. Geophys. Res.-Atmos. 119(D18), 10 (2014)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Sacit Özdemir
    • 1
    • 2
  • Cahit Yeşilyaprak
    • 3
    • 4
  • Bahadır Aktuğ
    • 5
  • Derya Öztürk
    • 1
    • 3
  • Deniz Çoker
    • 1
    • 3
  • Recep Balbay
    • 3
    • 6
  1. 1.Faculty of Science, Department of Astronomy and Space SciencesAnkara UniversityAnkaraTurkey
  2. 2.TÜBİTAK National ObservatoryAntalyaTurkey
  3. 3.Astrophysics Research and Application Center (ATASAM)Atatürk UniversityErzurumTurkey
  4. 4.Faculty of Science, Department of Astronomy and AstrophysicsAtatürk UniversityErzurumTurkey
  5. 5.Faculty of Engineering, Department of Geophysical EngineeringAnkara UniversityAnkaraTurkey
  6. 6.Faculty of Science, Department of Astronomy and Space SciencesErciyes UniversityKayseriTurkey

Personalised recommendations