Advertisement

Experimental Astronomy

, Volume 46, Issue 3, pp 401–411 | Cite as

Prospects for the characterisation of exo-zodiacal dust with the VLTI

  • S. ErtelEmail author
  • O. Absil
  • D. Defrère
  • J.-C. Augereau
  • B. Mennesson
Original Article
Part of the following topical collections:
  1. Future of Optical-infrared Interferometry in Europe

Abstract

Exo-zodiacal dust, exozodi for short, is warm (∼300 K) or hot (up to ∼2000 K) dust found in the inner regions of planetary systems around main sequence stars. In analogy to our own zodiacal dust, it may be located in or near the habitable zone or closer in, down to the dust sublimation distance. The study of the properties, distribution, and evolution of exozodis can inform about the architecture and dynamics of the innermost regions of planetary systems, close to their habitable zones. On the other hand, the presence of large amounts of exo-zodiacal dust may be an obstacle for future space missions aiming to image Earth-like exoplanets. The dust can be the most luminous component of extrasolar planetary systems, but predominantly emits in the near- to mid-infrared where it is outshone by the host star. Interferometry provides a unique method of separating the dusty from the stellar emission. We discuss the prospects of exozodi observations with the next generation VLTI instruments and summarize critical instrument specifications.

Keywords

Interferometry Circumstellar matter Exo-zodiacal dust Planetary systems 

References

  1. 1.
    Absil, O., di Folco, E., Mérand, A, Augereau, J.C., Coudé du Foresto, V, Aufdenberg, J.P., Kervella, P., Ridgway, S.T., Berger, D.H., ten Brummelaar, T.A., Sturmann, J., Sturmann, L., Turner, N.H., McAlister, H.A.: Circumstellar material in the Vega inner system revealed by CHARA/FLUOR. A&A 452, 237–244 (2006).  https://doi.org/10.1051/0004-6361:20054522, arXiv:astro-ph/0604260 ADSCrossRefGoogle Scholar
  2. 2.
    Absil, O., Defrère, D., Coudé du Foresto, V., Di Folco, E., Mérand, A, Augereau, J.C., Ertel, S., Hanot, C., Kervella, P., Mollier, B., Scott, N., Che, X., Monnier, J.D., Thureau, N., Tuthill, P.G., ten Brummelaar, T A, McAlister, H A, Sturmann, J, Sturmann, L, Turner, N.: A near-infrared interferometric survey of debris-disc stars. III. First statistics based on 42 stars observed with CHARA/FLUOR. A&A 555, A104 (2013).  https://doi.org/10.1051/0004-6361/201321673, arXiv:1307.2488 ADSCrossRefGoogle Scholar
  3. 3.
    Ballering, N.P., Rieke, G.H., Gáspár, A.: Probing the terrestrial regions of planetary systems: warm debris disks with emission features. ApJ 793, 57 (2014).  https://doi.org/10.1088/0004-637X/793/1/57, arXiv:1407.7547 ADSCrossRefGoogle Scholar
  4. 4.
    Bonsor, A., Augereau, J.C., Thébault, P.: Scattering of small bodies by planets: a potential origin for exozodiacal dust A&A 548, A104 (2012).  https://doi.org/10.1051/0004-6361/201220005, arXiv:1209.6033 ADSCrossRefGoogle Scholar
  5. 5.
    Bonsor, A., Raymond, S.N., Augereau, J.C.: The short-lived production of exozodiacal dust in the aftermath of a dynamical instability in planetary systems. MNRAS 433, 2938–2945 (2013).  https://doi.org/10.1093/mnras/stt933, arXiv:1306.0592 ADSCrossRefGoogle Scholar
  6. 6.
    Bonsor, A., Raymond, S.N., Augereau, J.C., Ormel, C.W.: Planetesimal-driven migration as an explanation for observations of high levels of warm, exozodiacal dust. MNRAS 441, 2380–2391 (2014).  https://doi.org/10.1093/mnras/stu721, arXiv:1404.2606 ADSCrossRefGoogle Scholar
  7. 7.
    Chen, C.H., Sargent, B.A., Bohac, C., Kim, K.H., Leibensperger, E., Jura, M., Najita, J., Forrest, W.J., Watson, D.M., Sloan, G.C., Keller, L.D.: Spitzer IRS spectroscopy of IRAS-discovered debris disks. ApJS 166, 351–377 (2006).  https://doi.org/10.1086/505751, arXiv:astro-ph/0605277 ADSCrossRefGoogle Scholar
  8. 8.
    Defrère, D., Absil, O., den Hartog, R., Hanot, C., Stark, C.: Nulling interferometry: impact of exozodiacal clouds on the performance of future life-finding space missions. A&A 509, A9 (2010).  https://doi.org/10.1051/0004-6361/200912973, arXiv:0910.3486 ADSCrossRefGoogle Scholar
  9. 9.
    Defrère, D., Absil, O., Augereau, J.C., di Folco, E., Berger, J.P., Coudé du Foresto, V., Kervella, P., Le Bouquin, J.B., Lebreton, J., Millan-Gabet, R., Monnier, J.D., Olofsson, J., Traub, W.: Hot exozodiacal dust resolved around Vega with IOTA/IONIC. A&A 534, A5 (2011).  https://doi.org/10.1051/0004-6361/201117017, arXiv:1108.3698 ADSCrossRefGoogle Scholar
  10. 10.
    Defrère, D., Lebreton, J., Le Bouquin, J.B., Lagrange, A.M., Absil, O., Augereau, J.C., Berger, J.P., di Folco, E., Ertel, S., Kluska, J., Montagnier, G., Millan-Gabet, R., Traub, W., Zins, G.: Hot circumstellar material resolved around β Pic with VLTI/PIONIER. A&A 546, L9 (2012).  https://doi.org/10.1051/0004-6361/201220287, arXiv:1210.1914 ADSCrossRefGoogle Scholar
  11. 11.
    Defrère, D., Absil, O., Berger, J.-P., Boulet, T., Danchi, W.C., Ertel, S., Gallenne, A., Hénault, F., Hinz, P., Huby, E., Ireland, M., Kraus, S., Labadie, L., Le Bouquin, J.-B., Martin, G., Matter, A., Mérand, A., Mennesson, B., Minardi, S., Monnier, J.D., Norris, B., de Xivry, G.O., Pedretti, E., Pott, J.-U., Reggiani, M., Serabyn, E., Surdej, J., Tristram, K.R.W., Woillez, J.: The path towards high-contrast imaging with the VLTI: the Hi-5 project. Experimental Astronomy. arXiv:1801.04148.  https://doi.org/10.1007/s10686-018-9593-2 (2018)
  12. 12.
    Defrère, D., Ireland, M., Absil, O., Berger, J.-P., Danchi, W.C., Ertel, S., Gallenne, A., Hénault, F., Hinz, P., Huby, E., Kraus, S., Labadie, L., Le Bouquin, J.-B., Martin, G., Matter, A., Mennesson, B., Mérand, A., Minardi, S., Monnier, J.D., Norris, B., Orban de Xivry, G., Pedretti, E., Pott, J.-U., Reggiani, M., Serabyn, E., Surdej, J., Tristram, K.R.W., Woillez, J.: Hi-5: a potential high-contrast thermal near-infrared imager for the VLTI. arXiv:1807.07467 (2018)
  13. 13.
    Eiroa, C., Marshall, J.P., Mora, A., Montesinos, B., Absil, O., Augereau, J.C., Bayo, A., Bryden, G., Danchi, W., del Burgo, C., Ertel, S., Fridlund, M., Heras, A.M., Krivov, A.V., Launhardt, R., Liseau, R., Löhne, T., Maldonado, J., Pilbratt, G.L., Roberge, A., Rodmann, J., Sanz-Forcada, J., Solano, E., Stapelfeldt, K., Thébault, P., Wolf, S., Ardila, D., Arévalo, M., Beichmann, C., Faramaz, V., González-García, B. M., Gutiérrez, R., Lebreton, J., Martínez-Arnáiz, R., Meeus, G., Montes, D., Olofsson, G., Su, K.Y.L., White, G.J., Barrado, D., Fukagawa, M., Grün, E., Kamp, I., Lorente, R., Morbidelli, A., Müller, S, Mutschke, H., Nakagawa, T., Ribas, I., Walker, H.: DUst around NEarby Stars. The survey observational results. A&A 555, A11 (2013).  https://doi.org/10.1051/0004-6361/201321050, arXiv:1305.0155 ADSCrossRefGoogle Scholar
  14. 14.
    Ertel, S., Absil, O., Defrère, D., Le Bouquin, J.B., Augereau, J.C., Marion, L., Blind, N., Bonsor, A., Bryden, G., Lebreton, J., Milli, J.: A near-infrared interferometric survey of debris-disk stars. IV. An unbiased sample of 92 southern stars observed in H band with VLTI/PIONIER. A&A 570, A128 (2014).  https://doi.org/10.1051/0004-6361/201424438, arXiv:1409.6143 ADSCrossRefGoogle Scholar
  15. 15.
    Ertel, S., Defrère, D., Absil, O., Le Bouquin, J.B., Augereau, J.C., Berger, J.P., Blind, N., Bonsor, A., Lagrange, A.M., Lebreton, J., Marion, L., Milli, J., Olofsson, J.: A near-infrared interferometric survey of debris-disc stars. V. PIONIER search for variability. A&A 595, A44 (2016).  https://doi.org/10.1051/0004-6361/201527721, arXiv:1608.05731 ADSCrossRefGoogle Scholar
  16. 16.
    Ertel, S., Defrère, D., Hinz, P., Mennesson, B., Kennedy, G.M., Danchi, W.C., Gelino, C., Hill, J.M., Hoffmann, W.F., Rieke, G., Shannon, A., Spalding, E., Stone, J.M., Vaz, A., Weinberger, A.J., Willems, P., Absil, O., Arbo, P., Bailey, V.P., Beichman, C., Bryden, G., Downey, E.C., Durney, O., Esposito, S., Gaspar, A., Grenz, P., Haniff, C.A., Leisenring, J.M., Marion, L., McMahon, T.J., Millan-Gabet, R., Montoya, M., Morzinski, K.M., Pinna, E., Power, J., Puglisi, A., Roberge, A., Serabyn, E., Skemer, A.J., Stapelfeldt, K., Su, K.Y.L., Vaitheeswaran, V., Wyatt, M.C.: The HOSTS survey—exozodiacal dust measurements for 30 Stars. AJ 155, 194 (2018a).  https://doi.org/10.3847/1538-3881/aab717, arXiv:1803.11265
  17. 17.
    Ertel, S., Kennedy, G.M., Defrère, D., et al.: The HOSTS survey for Exo-zodiacal dust: preliminary results and future prospects, proceedings SPIE, in press (2018b)Google Scholar
  18. 18.
    Faramaz, V., Ertel, S., Booth, M., Cuadra, J., Simmonds, C.: Inner mean-motion resonances with eccentric planets: a possible origin for exozodiacal dust clouds. MNRAS 465, 2352–2365 (2017).  https://doi.org/10.1093/mnras/stw2846, arXiv:1611.02196 ADSCrossRefGoogle Scholar
  19. 19.
    Hahn, J. M., Zook, H. A., Cooper, B., Sunkara, B.: Clementine observations of the zodiacal light and the dust content of the inner solar system. Icarus 158, 360–378 (2002).  https://doi.org/10.1006/icar.2002.6881, arXiv:astro-ph/0204111 ADSCrossRefGoogle Scholar
  20. 20.
    Kennedy, G.M., Wyatt, M.C.: The bright end of the exo-Zodi luminosity function: disc evolution and implications for exo-Earth detectability. MNRAS 433, 2334–2356 (2013).  https://doi.org/10.1093/mnras/stt900 ADSCrossRefGoogle Scholar
  21. 21.
    Kimura, H., Mann, I.: Brightness of the solar F-corona. Earth Planets Space 50, 493–499 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    Kirchschlager, F., Wolf, S., Krivov, A.V., Mutschke, H., Brunngräber, R.: Constraints on the structure of hot exozodiacal dust belts. MNRAS 467, 1614–1626 (2017).  https://doi.org/10.1093/mnras/stx202, arXiv:1701.07271 ADSGoogle Scholar
  23. 23.
    Kirchschlager, F., Wolf, S., Brunngräber, R., Matter, A., Krivov, A.V., Labdon, A.: Modelling of mid-infrared interferometric signature of hot exozodiacal dust emission. MNRAS 473, 2633–2638 (2018).  https://doi.org/10.1093/mnras/stx2515, arXiv:1709.08514 ADSCrossRefGoogle Scholar
  24. 24.
    Kral, Q., Krivov, A.V., Defrère, D., van Lieshout, R., Bonsor, A., Augereau, J.C., Thebault, P., Absil, O., Ertel, S.: Exozodiacal clouds: hot and warm dust around main sequence stars. Astronomical Review 13(2), 69–111 (2017).  https://doi.org/10.1080/21672857.2017.1353202, arXiv:1703.02540 ADSCrossRefGoogle Scholar
  25. 25.
    Lebreton, J., van Lieshout, R., Augereau, J.C., Absil, O., Mennesson, B., Kama, M., Dominik, C., Bonsor, A., Vandeportal, J., Beust, H., Defrère, D., Ertel, S., Faramaz, V., Hinz, P., Kral, Q., Lagrange, A.M., Liu, W., Thébault, P.: An interferometric study of the Fomalhaut inner debris disk. III. Detailed models of the exozodiacal disk and its origin. A&A 555, A146 (2013).  https://doi.org/10.1051/0004-6361/201321415, arXiv:1306.0956 ADSCrossRefGoogle Scholar
  26. 26.
    Lisse, C.M., Beichman, C.A., Bryden, G., Wyatt, M.C.: On the nature of the dust in the debris disk around HD 69830. ApJ 658, 584–592 (2007).  https://doi.org/10.1086/511001, arXiv:astro-ph/0611452 ADSCrossRefGoogle Scholar
  27. 27.
    Lisse, C.M., Chen, C.H., Wyatt, M.C., Morlok, A.: Circumstellar dust created by terrestrial planet formation in HD 113766. ApJ 673, 1106–1122 (2008).  https://doi.org/10.1086/523626, arXiv:0710.0839 ADSCrossRefGoogle Scholar
  28. 28.
    Marion, L., Absil, O., Ertel, S., Le Bouquin, J.B., Augereau, J.C., Blind, N., Defrère, D., Lebreton, J., Milli, J.: Searching for faint companions with VLTI/PIONIER. II. 92 main sequence stars from the Exozodi survey. A&A 570, A127 (2014).  https://doi.org/10.1051/0004-6361/201424780, arXiv:1409.6105 ADSCrossRefGoogle Scholar
  29. 29.
    Marshall, J.P., Cotton, D.V., Bott, K., Ertel, S., Kennedy, G.M., Wyatt, M.C., del Burgo, C., Absil, O., Bailey, J., Kedziora-Chudczer, L.: Polarization measurements of hot dust stars and the local interstellar medium. ApJ 825, 124 (2016).  https://doi.org/10.3847/0004-637X/825/2/124, arXiv:1604.08286 ADSCrossRefGoogle Scholar
  30. 30.
    Mennesson, B., Millan-Gabet, R., Serabyn, E., Colavita, M.M., Absil, O., Bryden, G., Wyatt, M., Danchi, W., Defrère, D., Doré, O., Hinz, P., Kuchner, M., Ragland, S., Scott, N., Stapelfeldt, K., Traub, W., Woillez, J.: Constraining the exozodiacal luminosity function of main-sequence stars: complete results from the Keck Nuller mid-infrared surveys. ApJ 797, 119 (2014).  https://doi.org/10.1088/0004-637X/797/2/119 ADSCrossRefGoogle Scholar
  31. 31.
    Millan-Gabet, R., Serabyn, E., Mennesson, B., Stark, C.C., Ragland, S., Hrynevych, M., Woillez, J., Stapelfeldt, K., Bryden, G., Colavita, M.M., Booth, A.J.: Exozodiacal dust levels for nearby main-sequence stars: a survey with the Keck interferometer Nuller. ApJ 734, 67 (2011).  https://doi.org/10.1088/0004-637X/734/1/67, arXiv:1104.1382 ADSCrossRefGoogle Scholar
  32. 32.
    Nuñez, P. D., Scott, N.J., Mennesson, B., Absil, O., Augereau, J.-C., Bryden, G., ten Brummelaar, T., Ertel, S., Coudé du Foresto, V., Ridgway, S.T., Sturmann, J., Sturmann, L., Turner, N.J., Turner, N.H.: A near-infrared interferometric survey of debris-disk stars. VI. Extending the exozodiacal light survey with CHARA/JouFLU. A&A 608, A113 (2017).  https://doi.org/10.1051/0004-6361/201730859, arXiv:1709.01655 ADSCrossRefGoogle Scholar
  33. 33.
    Olofsson, J., Juhász, A., Henning, T., Mutschke, H., Tamanai, A., Moór, A., Ábrahám, P.: Transient dust in warm debris disks. Detection of Fe-rich olivine grains. A&A 542, A90 (2012).  https://doi.org/10.1051/0004-6361/201118735, arXiv:1204.2374 ADSCrossRefGoogle Scholar
  34. 34.
    Rieke, G.H., Gáspár, A., Ballering, N.P.: Magnetic grain trapping and the hot excesses around early-type stars. ApJ 816, 50 (2016).  https://doi.org/10.3847/0004-637X/816/2/50, arXiv:1511.04998 ADSCrossRefGoogle Scholar
  35. 35.
    Roberge, A., Chen, C.H., Millan-Gabet, R., Weinberger, A.J., Hinz, P.M., Stapelfeldt, K.R., Absil, O., Kuchner, M.J., Bryden, G.: The exozodiacal dust problem for direct observations of exo-Earths. PASP 124, 799–808 (2012).  https://doi.org/10.1086/667218, arXiv:1204.0025 ADSCrossRefGoogle Scholar
  36. 36.
    Stark, C.C., Roberge, A., Mandell, A., Clampin, M., Domagal-Goldman, S.D., McElwain, M.W., Stapelfeldt, K.R.: Lower limits on aperture size for an ExoEarth detecting coronagraphic mission. ApJ 808, 149 (2015).  https://doi.org/10.1088/0004-637X/808/2/149, arXiv:1506.01723 ADSCrossRefGoogle Scholar
  37. 37.
    Stock, N.D., Su, K.Y.L., Liu, W., Hinz, P.M., Rieke, G.H., Marengo, M., Stapelfeldt, K.R., Hines, D.C., Trilling, D.E.: The structure of the β Leonis debris disk. ApJ 724, 1238–1255 (2010).  https://doi.org/10.1088/0004-637X/724/2/1238, arXiv:1010.0003 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Steward Observatory, Department of AstronomyUniversity of ArizonaTucsonUSA
  2. 2.Space Sciences, Technologies and Astrophysics Research (STAR) InstituteUniversité de LiègeLiègeBelgium
  3. 3.Université Grenoble Alpes, IPAGGrenobleFrance
  4. 4.CNRS, IPAGGrenobleFrance
  5. 5.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations