Advertisement

Experimental Astronomy

, Volume 46, Issue 3, pp 531–542 | Cite as

Optical long baseline intensity interferometry: prospects for stellar physics

  • Jean-Pierre RivetEmail author
  • Farrokh Vakili
  • Olivier Lai
  • David Vernet
  • Mathilde Fouché
  • William Guerin
  • Guillaume Labeyrie
  • Robin Kaiser
Original Article
Part of the following topical collections:
  1. Future of Optical-infrared Interferometry in Europe

Abstract

More than sixty years after the first intensity correlation experiments by Hanbury Brown and Twiss, there is renewed interest for intensity interferometry techniques for high angular resolution studies of celestial sources. We report on a successful attempt to measure the bunching peak in the intensity correlation function for bright stellar sources with 1 meter telescopes (I2C project). We propose further improvements of our preliminary experiments of spatial interferometry between two 1 m telescopes, and discuss the possibility to export our method to existing large arrays of telescopes.

Keywords

Temporal and spatial photon bunching Micro-arc-second interferometry In the optical wavelengths 

Notes

Acknowledgements

The I2C pilot experiment is supported by INPHYNI and Lagrange laboratories, Döblin Federation and grants from OCA and the Excellence Initiative UCA-JEDI from University Côte d’Azur. We are grateful to A. Dussaux for his valuable contribution to this project. We also thank E. Samain, C. Courde and J. Chabé (GeoAzur lab., OCA) for fruitful discussions about space and time metrology. Ph. Bério from Lagrange Laboratory (OCA) is also kindly acknowledged.

References

  1. 1.
    Capraro, I, Barbieri, C, Naletto, G, Occhipinti, T, Verroi, E, Zoccarato, P, Gradari, S: Quantum astronomy with Iqueye. Proc. SPIE 7702, 77,020M (2010)CrossRefGoogle Scholar
  2. 2.
    Cassinelli, J P, Hoffman, N M: The effect of linearly polarized light from extended stellar atmospheres on interferometer response functions. MNRAS 173, 789–800 (1975)ADSCrossRefGoogle Scholar
  3. 3.
    Dravins, D, LeBohec, S: Toward a diffraction-limited square-kilometer optical telescope: digital revival of intensity interferometry. Proc. SPIE 6986, 698,609 (2008)CrossRefGoogle Scholar
  4. 4.
    Dravins, D, LeBohec, S, Jensen, H, Nunez~, PD: Optical intensity interferometry with the Cherenkov Telescope Array. Astropart. Phys. 43, 331–447 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Dussaux, A, de Silans, PT, Guerin, W, Alibart, O, Tanzilli, S, Vakili, F, Kaiser, R: Temporal intensity correlation of light scattered by a hot atomic vapor. Phys. Rev. A 93, 043,826 (2016)CrossRefGoogle Scholar
  6. 6.
    Garcia, E V, Muterspaugh, M W, van Belle, G, Monnier, J D, Stassun, K G, Ghasempour, A, Clark, J H, Zavala, R T, Benson, J A, Hutter, D J, et al.: VISION: a six-telescope fiber-fed visible light beam combiner for the navy precision optical interferometer. PASP 128, 055004 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Gomes, N, Garcia, P J V, Thiébaut, E: Assessing the quality of restored images in optical long-baseline interferometry. MNRAS 465, 3823–3839 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Guerin, W, Dussaux, A, Fouché, M, Labeyrie, G, Rivet, J P, Vernet, D, Vakili, F, Kaiser, R: Temporal intensity interferometry: photon bunching in three bright stars. MNRAS 472, 4126–4132 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    Hanbury Brown, R: Stellar interferometer at Narrabri observatory. Nature 218, 637–641 (1968)CrossRefGoogle Scholar
  10. 10.
    Hanbury Brown, R: The intensity interferometer: its application to astronomy. Taylor and Francis, New York (1974)Google Scholar
  11. 11.
    Hanbury Brown, R, Twiss, RQ: Correlation between photons in two coherent beams of light. Nature 177, 27–29 (1956)ADSCrossRefGoogle Scholar
  12. 12.
    Hanbury Brown, R, Twiss, RQ: A test of a new type of stellar interferometer on Sirius. Nature 178, 1046–1048 (1956)ADSCrossRefGoogle Scholar
  13. 13.
    Hanbury Brown, R, Jennison, RC, Gupta, MKD: Apparent angular sizes of discrete radio sources: Observations at Jodrell Bank, Manchester. Nature 170, 1061–1063 (1952)ADSCrossRefGoogle Scholar
  14. 14.
    Hanbury Brown, R, Davis, J, Allen, LR: The stellar interferometer at Narrabri observatory—I. MNRAS 137, 375–392 (1967)ADSCrossRefGoogle Scholar
  15. 15.
    Hanbury Brown, R, Davis, J, Allen, LR, Rome, JM: The stellar interferometer at Narrabri observatory—II. MNRAS 137, 393–417 (1967)ADSCrossRefGoogle Scholar
  16. 16.
    Hanbury Brown, R, Davis, J, Allen, LR: The angular diameters of 32 stars. MNRAS 167, 121–136 (1974)ADSCrossRefGoogle Scholar
  17. 17.
    Hanbury Brown, R, Davis, J, Allen, LR: An attempt to detect a corona around beta Orionis with an intensity interferometer using linearly polarized light. MNRAS 168, 93–100 (1974)ADSCrossRefGoogle Scholar
  18. 18.
    Labeyrie, A: Interference fringes obtained on Vega with two optical telescopes. ApJ 196, L71–L75 (1975)ADSCrossRefGoogle Scholar
  19. 19.
    Labeyrie, A, Schumacher, G, Dugué, M, Thom, C, Bourlon, P: Fringes obtained with the large ‘boules’ interferometer at CERGA. A&A 162, 359–364 (1986)ADSGoogle Scholar
  20. 20.
    LeBohec, S, Holder, J: Optical intensity interferometry with atomospheric Cherenkov telescope array. ApJ 649, 399–405 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Lopez, B, Lagarde, S, Jaffe, W, Petrov, R, Schöller, M, Antonelli, P, Beckman, U, Berio, P, Bettonvil, F, Graser, U, et al.: MATISSE status report and science forecast. Proc. SPIE 9146, 91,460Z (2014)CrossRefGoogle Scholar
  22. 22.
    Malvimat, V, Wucknitz, O, Saha, P: Intensity interferometry with more than two detectors? MNRAS 437, 798–803 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Matthews, N, Kieda, D, LeBohec, S: Development of a digital astronomical intensity interferometer: laboratory results with thermal light. J. Mod. Opt. 65, 1336–1344 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    Mills, B Y: Apparent angular sizes of discrete radio sources: observations at Sydney. Nature 170, 1063–1064 (1952)ADSCrossRefGoogle Scholar
  25. 25.
    Mourard, D, Monnier, J D, Meilland, A, Gies, D, Millour, F, Benisty, M, Che, X, Grundstrom, E D, Ligi, R, Schaefer, G, et al.: Spectral and spatial imaging of the Be+sdO binary ϕ Persei. A&A 577, A51 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Naletto, G, Barbieri, C, Occhipinti, T, Capraro, I, Di Paola, A, Facchinetti, C, Verroi, E, Zoccarato, P, Anzolin, G, Belluso, M, et al: Iqueye, a single photon-counting photometer applied to the ESO new technology telescope. A&A 508, 531–539 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Nuñez, P D, Holmes, R, Kieda, D, LeBohec, S: High angular resolution imaging with stellar intensity interferometry using air Cherenkov telescope array. MNRAS 419, 172–183 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Petrov, R G, Malbet, F, Weigelt, G, Antonelli, P, Beckmann, U, Bresson, Y, Chelli, A, Dugué, M, Duvert, G, Gennari, S, Glück, L, Kern, P, Lagarde, S, Le Coarer, E, Lisi, F, Millour, F, Perraut, K, Puget, P, Rantakyrö, F, et al.: AMBER, the near-infrared spectro-interferometric three-telescope VLTI instrument. A&A 464, 1–12 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    Pilyavsky, G, Mauskopf, P, Smith, N, Schroeder, E, Sinclair, A, van Belle, G T, Hinkel, N, Scowen, P: Single-photon intensity interferometry (SPIIFy): utilizing available telescopes. MNRAS 467, 3048–3055 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    Samain, E: Clock comparison based on laser ranging technologies. Int. J. Mod. Phys. D 24, 021 (1530)Google Scholar
  31. 31.
    Smith, F G: Apparent angular sizes of discrete radio sources: observations at Cambridge. Nature 170, 1065 (1952)ADSCrossRefGoogle Scholar
  32. 32.
    Tan, P K, Yeo, G H, Poh, H S, Chan, A H, Kurtsiefer, C: Measuring temporal photon bunching in backbody radiation. ApJ 789, L10 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    Tan, P K, Chan, A H, Kurtsiefer, C: Optical intensity interferometry through atmospheric turbulence. MNRAS 457, 4291 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    Trippe, S, Kim, J Y, Lee, B, Choi, C, Oh, J, Lee, T, Yoon, S C, Im, M, Park, Y S: Optical multi-channel intensity interferometry—or: how to resolve O-stars in the Magellanic clouds. J. Kor. Astron. Soc. 47, 235–253 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    Vakili, F: Study of stellar polarization with the CERGA interferometer. A&A 101, 352–355 (1981)ADSGoogle Scholar
  36. 36.
    Vakili, F, Mourard, D, Bonneau, D, Stee, P: Subtle structures in the wind of P Cygni. A&A 323, 183–188 (1997)ADSGoogle Scholar
  37. 37.
    Zampieri, L, Naletto, G, Barbieri, C, Barbieri, M, Verroi, E, Umbriaco, G, Favazza, P, Lessio, L, Farisato, G: Intensity interferometry with Aqueye+ and Iqueye in Asiago. Proc. SPIE 9907, 99,070N (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire LagrangeUniversité Côte d’Azur, Observatoire de la Côte d’Azur, CNRSNiceFrance
  2. 2.UMS GaliléeObservatoire de la Côte d’Azur, CNRSNiceFrance
  3. 3.Institut de Physique de NiceUniversité Côte d’Azur, CNRSValbonneFrance

Personalised recommendations