Advertisement

Experimental Astronomy

, Volume 46, Issue 3, pp 433–445 | Cite as

Progress towards instrument miniaturisation for mid-IR long-baseline interferometry

  • Lucas LabadieEmail author
  • Stefano Minardi
  • Guillermo Martín
  • Robert R. Thomson
Original Article
Part of the following topical collections:
  1. Future of Optical-infrared Interferometry in Europe

Abstract

We report recent results on passive mid-infrared integrated optics from the project “Advanced Laser-writing for Stellar Interferometry” and shortly describe the perspectives of their hybridisation with active components for the benefit of the spectro-interferometry technique.

Keywords

Infrared interferometry VLTI Integrated optics 

Notes

Acknowledgements

ALSI is funded by the German Ministry of Education and Research (BMBF) through contracts 05A14PK2 and 05A14SJA.

Near and mid-IR research activities on spectro-interferometers are funded by the Labex FOCUS and the Action Spécifique Haute Résolution Angulaire.

We thank the anonymous referee for his comments aiming at improving the quality of the paper.

References

  1. 1.
    Arriola, A., Mukherjee, S., Choudhury, D., Labadie, L., Thomson, R.R.: Ultrafast laser inscription of mid-IR directional couplers for stellar interferometry. Opt. Lett. 39, 4820 (2014).  https://doi.org/10.1364/OL.39.004820. 1408.5953ADSCrossRefGoogle Scholar
  2. 2.
    Arriola, A., Gross, S., Ams, M., Gretzinger, T., Le Coq, D., Wang, R.P., Ebendorff-Heidepriem, H., Sanghera, J., Bayya, L., Shaw, L.B., Ireland, M., Tuthill, P., Withford, M.J.: Mid-infrared astrophotonics: study of ultrafast laser induced index change in compatible materials. Opt. Mater. Express 7, 698 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    Benisty, M., Berger, J.P., Jocou, L., Labeye, P., Malbet, F., Perraut, K., Kern, P.: An integrated optics beam combiner for the second generation VLTI instruments. A&A 498, 601–613 (2009).  https://doi.org/10.1051/0004-6361/200811083. 0902.2442ADSCrossRefGoogle Scholar
  4. 4.
    Bérubé, J.P., Le Camus, A., Messaddeq, S.H., Petit, Y., Messaddeq, Y., Canioni, L., Valleé, R.: Femtosecond laser direct inscription of mid-IR transmitting waveguides in BGG glasses. Opt. Mater. Express 7, 3124 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Bland-Hawthorn, J., Leon-Saval, S.G.: Astrophotonics: molding the flow of light in astronomical instruments. Opt. Express 25, 15,549 (2017).  https://doi.org/10.1364/OE.25.015549. 1706.05132CrossRefGoogle Scholar
  6. 6.
    Butcher, H.L., Lee, D., Brownsword, R., MacLachlan, D.G., Thomson, R.R.: Ultrafast laser-inscribed mid-infrared transmission gratings in IG2: modelling and high-resolution spectral characterization. Opt. Express 25, 33,617 (2018).  https://doi.org/10.1364/OE.25.016813 CrossRefGoogle Scholar
  7. 7.
    Christodoulides, D.N., Lederer, F., Silberberg, Y.: Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature 424, 817–823 (2003).  https://doi.org/10.1038/nature01936 ADSCrossRefGoogle Scholar
  8. 8.
    Colavita, M.: Fringe visibility estimators for the palomar testbed interferometer. Publ. Astr. Soc. Pac. 111, 111–117 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    Coudé du Foresto, V., Ridgway, S.T.: Fluor - a stellar interferometer using single-mode fibers. In: Beckers, J.M., Merkle, F. (eds.) European Southern Observatory Conference and Workshop Proceedings, vol. 39, p. 731 (1992)Google Scholar
  10. 10.
    Coudé du Foresto, V., Perrin, G., Boccas, M.: Minimization of fiber dispersion effects in double Fourier stellar interferometers. A&A 293, 278–286 (1995)ADSGoogle Scholar
  11. 11.
    Diener, R., Minardi, S., Tepper, J., Nolte, S, Labadie, L.: All-in-one 4-telescope beam combination with a zig-zag array of waveguides. In: Proceedings of Optical and Infrared Interferometry and Imaging V, vol. 9907, p. 990731. SPIE (2016).  https://doi.org/10.1117/12.2232290
  12. 12.
    Diener, R., Tepper, J., Labadie, L., Pertsch, T., Nolte, S., Minardi, S.: Towards 3D-photonic, multi-telescope beam combiners for mid-infrared astrointerferometry. Opt. Express 25, 19,262 (2017).  https://doi.org/10.1364/OE.25.019262 CrossRefGoogle Scholar
  13. 13.
    Douglass, G., Dreisow, F., Gross, S., Nolte, S., Withford, M.J.: Towards femtosecond laser written arrayed waveguide gratings. Opt. Express 23 (16), 21,392–21,402 (2015).  https://doi.org/10.1364/OE.23.021392. http://www.opticsexpress.org/abstract.cfm?URI=oe-23-16-21392 CrossRefGoogle Scholar
  14. 14.
    Eggleton, B.J., Luther-Davies, B., Richardson, K.: Chalcogenide photonics. Nat. Photonics 5, 141–148 (2011).  https://doi.org/10.1038/nphoton.2011.309 ADSCrossRefGoogle Scholar
  15. 15.
    Eisenhauer, F., Perrin, G., Brandner, W., Straubmeier, C., Perraut, K., Amorim, A., Schöller, M., Gillessen, S., Kervella, P.: GRAVITY: observing the Universe in motion. The Messenger 143, 16–24 (2011)ADSGoogle Scholar
  16. 16.
    Errmann, R., Minardi, S.: 6- and 8-telescope discrete beam combiners. In: Proceedings of Optical and Infrared Interferometry and Imaging V, vol. 9907, p. 990733. SPIE (2016).  https://doi.org/10.1117/12.2232329
  17. 17.
    Glezer, E.N., Milosavljevic, M., Huang, L., Finlay, R.J., Her, T.H., Callan, J.P., Mazur, E.: Three-dimensional optical storage inside transparent materials. Opt. Lett. 21, 2023–2025 (1996).  https://doi.org/10.1364/OL.21.002023 ADSCrossRefGoogle Scholar
  18. 18.
    Gross, S., Withford, M.J.: Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications. Nanophotonics 4, 20 (2015).  https://doi.org/10.1515/nanoph-2015-0020 ADSCrossRefGoogle Scholar
  19. 19.
    Hô, N., Phillips, M.C., Qiao, H., Allen, P.J., Krishnaswami, K., Riley, B.J., Myers, T.L., Anheier, JrN.C.: Single-mode low-loss chalcogenide glass waveguides for the mid-infrared. Opt. Lett. 31, 1860–1862 (2006).  https://doi.org/10.1364/OL.31.001860 ADSCrossRefGoogle Scholar
  20. 20.
    Hsiao, H.K., Winick, K.A., Monnier, J.D., Berger, J.P.: An infrared integrated optic astronomical beam combiner for stellar interferometry at 3-4 \(\mu \)m. Opt. Express 17, 18,489–18,500 (2009). 0911.1106CrossRefGoogle Scholar
  21. 21.
    Jovanovic, N., Tuthill, P.G., Norris, B., Gross, S., Stewart, P., Charles, N., Lacour, S., Ams, M., Lawrence, J.S., Lehmann, A., Niel, C., Robertson, J.G., Marshall, G.D., Ireland, M., Fuerbach, A., Withford, M.J.: Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging. MNRAS 427, 806–815 (2012).  https://doi.org/10.1111/j.1365-2966.2012.21997.x. 1210.0603ADSCrossRefGoogle Scholar
  22. 22.
    Kenchington Goldsmith, H.D., Cvetojevic, N., Ireland, M., Madden, S.: Fabrication tolerant chalcogenide mid-infrared multimode interference coupler design with applications for Bracewell nulling interferometry. Opt. Express 25, 3038 (2017).  https://doi.org/10.1364/OE.25.003038. 1702.00468ADSCrossRefGoogle Scholar
  23. 23.
    Kenchington Goldsmith, H.D., Ireland, M., Ma, P., Cevetojevic, N., Madden, S.: Improving the extinction bandwidth of MMI chalcogenide photonic chip based MIR nulling interferometers. Opt. Express 25, 16,813 (2017).  https://doi.org/10.1364/OE.25.016813 CrossRefGoogle Scholar
  24. 24.
    Khan, S., Chiles, J., Ma, J., Fathpour, S.: Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics. Appl. Phys. Lett. 102(12), 121104 (2013).  https://doi.org/10.1063/1.4798557 ADSCrossRefGoogle Scholar
  25. 25.
    Labadie, L., Martín, G., Anheier, N.C., Arezki, B., Qiao, H.A., Bernacki, B., Kern, P.: First fringes with an integrated-optics beam combiner at 10 \(\mu \)m. A new step towards instrument miniaturization for mid-infrared interferometry. A&A 531, A48 (2011).  https://doi.org/10.1051/0004-6361/201116727. 1104.2899ADSCrossRefGoogle Scholar
  26. 26.
    Labadie, L., Martín, G., Ródenas, A., Anheier, N.C., Arezki, B., Thomson, R.R., Qiao, H.A., Kern, P., Kar, A.K., Bernacki, B.E.: Advances in the development of mid-infrared integrated devices for interferometric arrays. In: Proceedings of Optical and Infrared Interferometry III, vol. 8445, p. 844515 SPIE (2012).  https://doi.org/10.1117/12.925636 1207.4811
  27. 27.
    Labadie, L., Berger, J.P., Cvetojevic, N., Haynes, R., Harris, R., Jovanovic, N., Lacour, S., Martin, G., Minardi, S., Perrin, G. , Roth, M., Thomson, R.R.: Astronomical photonics in the context of infrared interferometry and high-resolution spectroscopy. In: Proceedings of Optical and Infrared Interferometry and Imaging V, vol. 9907, p. 990718. SPIE (2016).  https://doi.org/10.1117/12.2230889. 1608.02640
  28. 28.
    Le Bouquin, J.B., Berger, J.P., Lazareff, B., Zins, G., Haguenauer, P., Jocou, L., Kern, P., Millan-Gabet, R., Traub, W., Absil, O., Augereau, J.C., Benisty, M., Blind, N., Bonfils, X., Bourget, P., Delboulbe, A., Feautrier, P., Germain, M., Gitton, P. , Gillier, D., Kiekebusch, M., Kluska, J., Knudstrup, J., Labeye, P., Lizon, J.L., Monin, J.L., Magnard, Y., Malbet, F., Maurel, D., Ménard, F., Micallef, M., Michaud, L., Montagnier, G. , Morel, S., Moulin, T., Perraut, K., Popovic, D., Rabou, P., Rochat, S., Rojas, C., Roussel, F., Roux, A., Stadler, E., Stefl, S., Tatulli, E., Ventura, N.: PIONIER: a 4-telescope visitor instrument at VLTI. A&A 535, A67 (2011).  https://doi.org/10.1051/0004-6361/201117586. 1109.1918ADSCrossRefGoogle Scholar
  29. 29.
    Le Coarer, E., Blaize, S., Benech, P., Stefanon, I., Morand, A., Lérondel, G., Leblond, G., Kern, P., Fedeli, J.M., Royer, P.: Wavelength-scale stationary-wave integrated Fourier-transform spectrometry. Nat. Photonics 1, 473–478 (2007).  https://doi.org/10.1038/nphoton.2007.138. 0708.0272ADSCrossRefGoogle Scholar
  30. 30.
    Li, F., Jackson, S.D., Grillet, C., Magi, E., Hudson, D., Madden, S.J., Moghe, Y., ’Brien, C., Read, A., Duvall, S.G., Atanackovic, P., Eggleton, B.J. , Moss, D.J.: Low propagation loss silicon-on-sapphire waveguides for the mid-infrared. Opt. Express 19, 15,212–15,220 (2011).  https://doi.org/10.1364/OE.19.015212. 1705.10038CrossRefGoogle Scholar
  31. 31.
    Madden, G.E., Choudhury, D., MacPherson, W.N., Thomson, R.R.: Development of low-loss mid-infrared ultrafast laser inscribed waveguides. Opt. Eng. 56(7), 075102 (2017).  https://doi.org/10.1117/1.OE.56.7.075102 ADSCrossRefGoogle Scholar
  32. 32.
    Martin, G., Heidmann, S., Rauch, J.Y., Jocou, L., Courjal, N.: Electro-optic fringe locking and photometric tuning using a two-stage Mach-Zehnder lithium niobate waveguide for high-contrast mid-infrared interferometry. Opt. Eng. 53(3), 034101 (2014).  https://doi.org/10.1117/1.OE.53.3.034101 ADSCrossRefGoogle Scholar
  33. 33.
    Martin, G., Heidmann, S., Thomas, F., de Mengin, M., Jocou, L., Ulliac, G., Courjal, N., Morand, A., Benech, P., le Coarer, E.P.: Lithium Niobate active beam combiners: results of on-chip fringe locking, fringe scanning and high contrast integrated optics interferometry and spectrometry. In: Proceedings of Optical and Infrared Interferometry IV, vol. 9146, p. 91462I. SPIE (2014).  https://doi.org/10.1117/12.2055516
  34. 34.
    Martin, G., Pugnat, T., Gardillou, F., Cassagnettes, C., Barbier, D., Guyot, C., Hauden, J., Huby, E., Lacour, S.: Novel multi-telescopes beam combiners for next generation instruments (FIRST/SUBARU). In: Proceedings of Optical and Infrared Interferometry and Imaging V, vol. 9907, p. 990738. SPIE (2016).  https://doi.org/10.1117/12.2233105
  35. 35.
    Martin, G., Bhuyan, M., Troles, J., D’Amico, C., Stoian, R., Le Coarer, E.: Near infrared spectro-interferometer using femtosecond laser written GLS embedded waveguides and nano-scatterers. Opt. Express 25, 8386 (2017).  https://doi.org/10.1364/OE.25.008386 ADSCrossRefGoogle Scholar
  36. 36.
    Mashanovich, G.Z., Milosević, M.M., Nedeljkovic, M., Owens, N., Xiong, B., Teo, E.J., Hu, Y.: Low loss silicon waveguides for the mid-infrared. Opt. Express 19, 7112 (2011).  https://doi.org/10.1364/OE.19.007112 ADSCrossRefGoogle Scholar
  37. 37.
    Mennesson, B., Mariotti, J.M., Coudé du Foresto, V., Perrin, G., Ridgway, S., Ruilier, C., Traub, W.A., Carleton, N.P., Lacasse, M.G., Mazé, G.: Thermal infrared stellar interferometry using single-mode guided optics: first results with the TISIS experiment on IOTA. A&A 346, 181–189 (1999)ADSGoogle Scholar
  38. 38.
    Minardi, S.: Nonlocality of coupling and the retrieval of field correlations with arrays of waveguides. Phys. Rev. A 92(1), 013804 (2015).  https://doi.org/10.1103/PhysRevA.92.013804 ADSCrossRefGoogle Scholar
  39. 39.
    Minardi, S., Pertsch, T.: Interferometric beam combination with discrete optics. Opt. Lett. 35, 3009–3011 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    Minardi, S., Dreisow, F., Gräfe, M, Nolte, S., Pertsch, T.: Three-dimensional photonic component for multichannel coherence measurements. Opt. Lett. 37, 3030–3032 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    Minardi, S., Lacour, S., Berger, J.P., Labadie, L., Thomson, R.R., Haniff, C., Ireland, M.: Beam combination schemes and technologies for the Planet Formation Imager. In: Proceedings of Optical and infrared interferometry and imaging V, vol. 9907, p. 99071N. SPIE (2016).  https://doi.org/10.1117/12.2232656. 1608.00586
  42. 42.
    Nguyen, H.D., Ródenas, A., de Aldana, J.R.V., Martín, G., Martínez, J., Aguiló, M., Pujol, M.C. , Díaz, F.: Low-loss 3d-laser-written mid-infrared linbo3 depressed-index cladding waveguides for both te and tm polarizations. Opt. Express 25(4), 3722–3736 (2017).  https://doi.org/10.1364/OE.25.003722 . http://www.opticsexpress.org/abstract.cfm?URI=oe-25-4-3722 ADSCrossRefGoogle Scholar
  43. 43.
    Ródenas, A., Martin, G., Arezki, B., Psaila, N., Jose, G., Jha, A., Labadie, L., Kern, P., Kar, A., Thomson, R.: Three-dimensional mid-infrared photonic circuits in chalcogenide glass. Opt. Lett. 37, 392 (2012).  https://doi.org/10.1364/OL.37.000392. 1112.2546ADSCrossRefGoogle Scholar
  44. 44.
    Saviauk, A., Minardi, S., Dreisow, F., Nolte, S., Pertsch, T.: 3D-integrated optics component for astronomical spectro-interferometry. Appl. Opt. 52, 4556 (2013).  https://doi.org/10.1364/AO.52.004556 ADSCrossRefGoogle Scholar
  45. 45.
    Tatulli, E., LeBouquin, J.B.: Comparison of fourier and model-based estimators in single-mode multi-axial interferometry. Month Not. R. As. Soc. 368, 1159–1168 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    Tepper, J., Labadie, L., Diener, R., Minardi, S., Pott, J.U., Thomson, R., Nolte, S.: Integrated optics prototype beam combiner for long baseline interferometry in the L and M bands. Astron. Astrophys. 602, A66 (2017).  https://doi.org/10.1051/0004-6361/201630138 . 1704.05846ADSCrossRefGoogle Scholar
  47. 47.
    Tepper, J., Labadie, L., Gross, S., Arriola, A., Minardi, S., Diener, R., Withford, M.J.: Ultrafast laser inscription in ZBLAN integrated optics chips for mid-IR beam combination in astronomical interferometry. Opt. Express 25, 20,642 (2017).  https://doi.org/10.1364/OE.25.020642 CrossRefGoogle Scholar
  48. 48.
    Thomson, R.R., Kar, A.K., Allington-Smith, J.: Ultrafast laser inscription: an enabling technology for astrophotonics. Opt. Express 17, 1963–1969 (2009).  https://doi.org/10.1364/OE.17.001963. 0908.1325ADSCrossRefGoogle Scholar
  49. 49.
    Vigreux, C., Escalier, R., Pradel, A., Bastard, L., Broquin, J.E., Zhang, X., Billeton, T., Parent, G., Barillot, M., Kirschner, V.: Telluride buried channel waveguides operating from 6 to 20 \(\mu \)m for photonic applications. Opt. Mater. 49, 218–223 (2015).  https://doi.org/10.1016/j.optmat.2015.09.025 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Lucas Labadie
    • 1
    Email author
  • Stefano Minardi
    • 2
    • 3
  • Guillermo Martín
    • 4
  • Robert R. Thomson
    • 5
  1. 1.I. Physikalisches InstitutUniversität zu KölnCologneGermany
  2. 2.Institute of Applied PhysicsFriedrich-Schiller-Univ.JenaGermany
  3. 3.InnoFSPEC, Leibnitz Institute for Astrophysics PotsdamPotsdamGermany
  4. 4.University Grenoble Alpes/CNRS, IPAGGrenobleFrance
  5. 5.Heriot-Watt UniversityEdinburghUK

Personalised recommendations