Experimental Astronomy

, Volume 46, Issue 3, pp 421–431 | Cite as

Interferometry in the era of time-domain astronomy

  • Gail H. Schaefer
  • Arnaud Cassan
  • Alexandre Gallenne
  • Rachael M. Roettenbacher
  • Jean Schneider
Original Article
Part of the following topical collections:
  1. Future of Optical-infrared Interferometry in Europe


The physical nature of time variable objects is often inferred from photometric light-curves and spectroscopic variations. Long-baseline optical interferometry has the power to resolve the spatial structure of time variable sources directly in order to measure their physical properties and test the physics of the underlying models. Recent interferometric studies of variable objects include measuring the angular expansion and spatial structure during the early stages of novae outbursts, studying the transits and tidal distortions of the components in eclipsing and interacting binaries, measuring the radial pulsations in Cepheid variables, monitoring changes in the circumstellar discs around rapidly rotating massive stars, and imaging starspots. Future applications include measuring the image size and centroid displacements in gravitational microlensing events, and imaging the transits of exoplanets. Ongoing and upcoming photometric surveys will dramatically increase the number of time-variable objects detected each year, providing many potential targets to observe interferometrically. For short-lived transient events, it is critical for interferometric arrays to have the flexibility to respond rapidly to targets of opportunity and optimize the selection of baselines and beam combiners to provide the necessary resolution and sensitivity to resolve the source as its brightness and size change. We discuss the science opportunities made possible by resolving variable sources using long baseline optical interferometry.


Techniques: high angular resolution Techniques: interferometric Stars: emission-line, Be Stars: variables: Cepheids Novae, cataclysmic variables Starspots 


  1. 1.
    Baron, F., Monnier, J.D., Pedretti, E., Zhao, M., Schaefer, G., Parks, R., Che, X., Thureau, N., ten Brummelaar, T.A., McAlister, H.A., Ridgway, S.T., Farrington, C., Sturmann, J., Sturmann, L., Turner, N.: Imaging the Algol Triple System in the H Band with the CHARA Interferometer. Astrophys. J. 752, 20 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    Bode, M.F., & Evans, A. (eds): Classical Novae, Cambridge University Press (2008).
  3. 3.
    Bonneau, D., Chesneau, O., Mourard, D., Bério, P., Clausse, J.M., Delaa, O., Marcotto, A., Perraut, K., Roussel, A., Spang, A., Stee, P., Tallon-Bosc, I., McAlister, H., ten Brummelaar, T., Sturmann, J., Sturmann, L., Turner, N., Farrington, C., Goldfinger, P.J.: A large Hα line forming region for the massive interacting binaries β Lyrae and υ Sagitarii. Astron. Astrophys. 532, A148 (2011)CrossRefGoogle Scholar
  4. 4.
    Breitfelder, J., Kervella, P., Mérand, A., Gallenne, A., Szabados, L., Anderson, R.I., Willson, M., Le Bouquin, J.-B.: Observational calibration of the projection factor of Cepheids. I. The type II Cepheid κ Pavonis. Astron. Astrophys. 576(A64), (2015)Google Scholar
  5. 5.
    Breitfelder, J., Mérand, A., Kervella, P., Gallenne, A., Szabados, L., Anderson, R.I., Le Bouquin, J.-B.: Observational calibration of the projection factor of Cepheids. II. Application to nine Cepheids with HST/FGS parallax measurements. Astron. Astrophys. 587(A117), (2016)Google Scholar
  6. 6.
    Carciofi, A.C., Okazaki, A.T., Le Bouquin, J.-B., Štefl, S., Rivinius, T., Baade, D., Bjorkman, J.E., Hummel, C.A.: Cyclic variability of the circumstellar disk of the Be star ζ Tauri. II. Testing the 2D global disk oscillation model. Astron. Astrophysics. 504, 915 (2009)Google Scholar
  7. 7.
    Cassan, A., Ranc, C.: Interferometric observation of microlensing events. Mon. Not. R. Astron. Soc. 458, 2074–2079 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    Cassan, A., et al.: One or more bound planets per Milky Way star from microlensing observations. Nature. 481, 167–169 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Chelli, A., Duvert, G., Malbet, F., Kern, P.: Phase closure nulling. Application to the spectroscopy of faint companions. Astron. Astrophys. 498, 321–327 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Chesneau, O., Banerjee, D.P.K.: Interferometric studies of novae in the infrared. Bull. Astron. Soc. India. 40, 267–292 (2012)ADSGoogle Scholar
  11. 11.
    Dalal, N., Lane, B.F.: Bringing Closure to Microlensing Mass Measurement. Astrophys. J. 589, 199–209 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Delplancke, F., Góürski, K.M., Richichi, A.: Resolving gravitational microlensing events with long-baseline optical interferometry. Astron. Astrophys. 375, 701 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    Duvert, G., Chelli, A., Malbet, F., Kern, P., et al.: Astron. Astrophys. 509(66), (2010)Google Scholar
  14. 14.
    Freedman, W.L., Madore, B.F., Gibson, B.K., Ferrarese, L., Kelson, D.D., Sakai, S., Mould, J.R., Kennicutt, R.C., Ford, H.C., Graham, J.A., Huchra, J.P., Hughes, S.M.G., Illingworth, G.D., Macri, L.M., Stetson, P.B.: Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant. Astrophys. J. 553, 47–72 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    Gallenne, A., Kervella, P., Mérand, A., McAlister, H., ten Brummelaar, T., Coudé du Foresto, V., Sturmann, J., Sturmann, L., Turner, N., Farrington, C., Goldfinger, P.J., et al.: Astron. Astrophys. 541, 87 (2012)CrossRefGoogle Scholar
  16. 16.
    Gallenne, A., Kervella, P., Mérand, A., Pietrzyński, G., Gieren, W., Nardetto, N., Trahin, B.: Observational calibration of the projection factor of Cepheids. IV. Period-projection factor relation of Galactic and Magellanic Cloud Cepheids. Astron. Astrophys. 608(A18), (2017)Google Scholar
  17. 17.
    Gaudi, B.: Microlensing Surveys for Exoplanets. Annu. Rev. Astron. Astrophys. 50, 411–453 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Han, C.: Astrometric Method for Breaking the Photometric Degeneracy Between Binary-Source and Planetary Microlensing Perturbations. Astrophys. J. 564, 1015–1018 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    Henry, G.W., Eaton, J.A., Hamer, J., Hall, D.S.: Starspot evolution, differential rotation, and magnetic cycles in the chromospherically active binaries lambda andromedae, sigma Geminorum, II Pegasi, and V711 Tauri. Astron. Astrophys. 97, 513 (1995)ADSGoogle Scholar
  20. 20.
    Huber, D., et al.: Fundamental Properties of Stars Using Asteroseismology from Kepler and CoRoT and Interferometry from the CHARA Array. Astrophys. J. 760, 32 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Kervella, P., Nardetto, N., Bersier, D., Mourard, D., Coude du Foresto, V.: Cepheid distances from infrared long-baseline interferometry. I. VINCI/VLTI observations of seven Galactic Cepheids. Astron. Astrophysics. 416, 941 (2004)Google Scholar
  22. 22.
    Kloppenborg, B., Stencel, R., Monnier, J.D., Schaefer, G., Zhao, M., Baron, F., McAlister, H., ten Brummelaar, T., Che, X., Farrington, C., Pedretti, E., Sallave-Goldfinger, P.J., Sturmann, J., Sturmann, L., Thureau, N., Turner, N., Carroll, S.M.: Infrared images of the transiting disk in the ɛ Aurigae system. Nature. 464, 870–872 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Kloppenborg, B.K., Stencel, R.E., Monnier, J.D., Schaefer, G.H., Baron, F., Tycner, C., Zavala, R.T., Hutter, D., Zhao, M., Che, X., ten Brummelaar, T.A., Farrington, C.D., Parks, R., McAlister, H.A., Sturmann, J., Sturmann, L., Sallave-Goldfinger, P.J., Turner, N., Pedretti, E., Thureau, N.: Interferometry of ɛ Aurigae: Characterization of the Asymmetric Eclipsing Disk. Astrophys. J. Suppl. 220, 14 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    Ligi, R., Creevey, O., Mourard, D., Crida, A., Lagrange, A.-M., Nardetto, N., Perraut, K., Schultheis, M., Tallon-Bosc, I., ten Brummelaar, T., et al.: Astron. Astrophys. 586, A94 (2016)CrossRefGoogle Scholar
  25. 25.
    Livio, M., Shankar, A., Burkert, A., Truran, J.W.: The common envelope phase in the outbursts of classical novae. Astrophys. J. 356, 250–254 (1990)ADSCrossRefGoogle Scholar
  26. 26.
    Lloyd, H.M., O’Brien, T.J., Bode, M.F.: Shaping of nova remnants by binary motion. Mon. Not. R. Astron. Soc. 284, 137–147 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    Mao, S., Paczynski, B.: Gravitational microlensing by double stars and planetary systems. Astrophys. J. 374, L37 (1991)ADSCrossRefGoogle Scholar
  28. 28.
    Mérand, A., Kervella, P., Coudé du Foresto, V., Ridgway, S.T., Aufdenberg, J.P., ten Brummelaar, T.A., Berger, D.H., Sturmann, J., Sturmann, L., Turner, N.H., McAlister, H.A., et al.: Astron. Astrophys. 438, L9–L12 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    Mérand, A., Patru, F., Aufdenberg, J.: Spectro-Interferometry Studies of Velocity-Related Phenomena at the Surface of Stars: Pulsation and Rotation. In: Suarez, J.C., Garrido, R., Balona, L.A., Christensen-Dalsgaard, J. (eds.) Advances in Solid State Physics, Vol. 31, p. 159. Springer-Verlag, Berlin (2013)Google Scholar
  30. 30.
    Mérand, A., Kervella, P., Breitfelder, J., Gallenne, A., Coudé du Foresto, V., ten Brummelaar, T.A., McAlister, H.A., Ridgway, S., Sturmann, L., Sturmann, J., Turner, N.H.: Cepheid distances from the SpectroPhoto-Interferometry of Pulsating Stars (SPIPS). Application to the prototypes δ Cephei and η Aquilae. Astron. Astrophys. 584, A80 (2015)CrossRefGoogle Scholar
  31. 31.
    Mourard, D., Bonneau, D., Koechlin, L., Labeyrie, A., Morand, F., Stee, P., Tallon-Bosc, I., Vakili, F.: The mean angular diameter of δ Cephei measured by optical long-baseline interferometry. Astron. Astrophys. 317, 789–792 (1997)ADSGoogle Scholar
  32. 32.
    Mourard, D., Harmanec, P., Stencel, R., Bério, P., Chesneau, O., Clausse, J.M., Ligi, R., Nardetto, N., Perraut, K., Stee, P., Tallon-Bosc, I., McAlister, H., ten Brummelaar, T., Ridgway, S., Sturmann, J., Sturmann, L., Turner, N., Farrington, C., Goldfinger, P.J.: A high angular and spectral resolution view into the hidden companion of ɛ Aurigae. Astron. Astrophys. 544, A91 (2012)CrossRefGoogle Scholar
  33. 33.
    Muterspaugh, M.W., Lane, B.F., Kulkarni, S.R., Konacki, M., Burke, B.F., Colavita, M.M., Shao, M., Hartkopf, W.I., Boss, A.P., Williamson, M.: The Phases Differential Astrometry Data Archive. V. Candidate Substellar Companions to Binary Systems. Astron. J. 140, 1657–1671 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    Okazaki, A.T.: Long-term V/R variations of Be stars due to global one-armed oscillations of equatorial disks 1991. Publ. Astron. Soc. Japan. 43, 75–94 (1991)ADSGoogle Scholar
  35. 35.
    Orio, M., Shaviv, G.: Local thermonuclear runaways among classical novae. Astrophys. Space Sci. 202, 273–288 (1993)ADSCrossRefGoogle Scholar
  36. 36.
    Paczyński, B.: Gravitational microlensing by the galactic halo. Astrophys. J. 304, 1–5 (1986)ADSCrossRefGoogle Scholar
  37. 37.
    Paczyński, B.: Gravitational Microlensing in the Local Group. Annu. Rev. Astron. Astrophys. 34, 419–459 (1996)ADSCrossRefGoogle Scholar
  38. 38.
    Parks, J.R., White, R.J., Baron, F., Monnier, J.D., Kloppenborg, B., Henry, G., Scheafer, G., Che, X., Pedretti, E., Thureau, N., Zhao, M., ten Brummelaar, T., McAlister, H., Ridgway, S.T., Turner, N., Sturmann, J., Sturmann, L.: First Images of Cool Starspots on a Star Other than the Sun: Interferometric Imaging of λ Andromedae. ArXiv. 1508, 04755 (2015)Google Scholar
  39. 39.
    Planck Collaboration, et al.: Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophysics. 571, A16 (2014)Google Scholar
  40. 40.
    Porter, J.M., O’Brien, T.J., Bode, M.F.: On the asphericity of nova remnants caused by rotating white dwarf envelopes. Mon. Not. R. Astron. Soc. 296, 943–948 (1998)ADSCrossRefGoogle Scholar
  41. 41.
    Ranc, C., et al.: MOA-2007-BLG-197: Exploring the brown dwarf desert. Astron. Astrophysics. 580, A125 (2015)Google Scholar
  42. 42.
    Rattenbury, N.J., Mao, S.: Interferometric visibility and closure phase of microlensing events with finite source size. Mon. Not. R. Astron. Soc. 365, 792–800 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    Riess, A.G., Macri, L., Casertano, S., Lampeitl, H., Ferguson, H.C., Filippenko, A.V., Jha, S.W., Li, W., Chornock, R.: A 3% Solution: Determination of the Hubble Constant with the Hubble Space Telescope and Wide Field Camera 3. Astrophys. J. 730, 119 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    Rivinius, T., Carciofi, A.C., Martayan, C.: Classical Be stars. Rapidly rotating B stars with viscous Keplerian decretion disks. Astron. Astrophys. Rev. 21(69), (2013)Google Scholar
  45. 45.
    Roettenbacher, R.M., Monnier, J.D., Harmon, R.O., Barclay, T., Still, M.: Imaging Starspot Evolution on Kepler Target KIC 5110407 Using Light-Curve Inversion. Astrophys. J. 767, 60 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    Roettenbacher, R.M., Monnier, J.D., Korhonen, H., Aarnio, A.N., Baron, F., Che, X., Harmon, R.O., Kővári, Z.S., Kraus, S., Schaefer, G.H., Torres, G., Zhao, M., Ten Brummelaar, T.A., Sturmann, J., Sturmann, L.: No Sun-like dynamo on the active star ζ Andromedae from starspot asymmetry. Nature. 533, 217–220 (2016)ADSCrossRefGoogle Scholar
  47. 47.
    Roettenbacher, R.M., Monnier, J.D., Korhonen, H., Harmon, R.O., Baron, F., Hackman, T., Henry, G.W., Schaefer, G.H., Strassmeier, K.G., Weber, M., ten Brummelaar, T.A.: Contemporaneous Imaging Comparisons of the Spotted Giant σ Geminorum Using Interferometric, Spectroscopic, and Photometric Data. Astrophys. J. 849, 120 (2017)ADSCrossRefGoogle Scholar
  48. 48.
    Schaefer, G.H., Gies, D.R., Monnier, J.D., Richardson, N.D., Touhami, Y., Zhao, M., Che, X., Pedretti, E., Thureau, N., ten Brummelaar, T., McAlister, H.A., Ridgway, S.T., Sturmann, J., Sturmann, L., Turner, N.H., Farrington, C.D., Goldfinger, P.J.: Multi-epoch Near-infrared Interferometry of the Spatially Resolved Disk around the Be Star ζ Tau. Astron. J. 140, 1838–1849 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    Schaefer, G.H., et al.: The expanding fireball of Nova Delphini 2013. Nature. 515, 234–236 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    Schneider, J.: Extrasolar Planet Transits: Detection and Follow-up. In: Bergeron, J., Renzini, A. (eds.) From Extrasolar Planets to Cosmology: The VLT Opening Symposium, p. 499. Springer-Verlag, Berlin (2000)CrossRefGoogle Scholar
  51. 51.
    Schneider, J., Léger, A., Fridlund, M., White, G.J., Eiroa, C., Henning, T., Herbst, T., Lammer, H., Liseau, R., Paresce, F., Penny, A., Quirrenbach, A., Röttgering, H., Selsis, F., Beichman, C., Danchi, W., Kaltenegger, L., Lunine, J., Stam, D., Tinetti, G.: The Far Future of Exoplanet Direct Characterization. Astrobiology. 10, 121–126 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    Scott, A.D.: Nova outbursts on rotating oblate white dwarfs. Mon. Not. R. Astron. Soc. 313, 775 (2000)ADSCrossRefGoogle Scholar
  53. 53.
    Štefl, S., Rivinius, T., Carciofi, A.C., Le Bouquin, J.-B., Baade, D., Bjorkman, K.S., Hesselbach, E., Hummel, C.A., Okazaki, A.T., Pollmann, E., Rantakyrö, F., Wisniewski, J.P.: Cyclic variability of the circumstellar disk of the Be star ζ Tauri. I. Long-term monitoring observations. Astron. Astrophys. 504, 929–944 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    Stencel, R.E.: Interferometric studies of disk-eclipsed binary star systems. Proc. SPIE. 9907, 990717 (2016)CrossRefGoogle Scholar
  55. 55.
    Strassmeier, K.G.: Starspots. Astron. Astrophys. Rev. 17, 251–308 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    Sumi, T., et al.: Unbound or distant planetary mass population detected by gravitational microlensing. Nature. 473, 349–352 (2011)ADSCrossRefGoogle Scholar
  57. 57.
    van Belle, G.T., von Braun, K., Boyajian, T., Schaefer, G.: Direct Imaging of Planet Transit Events. Proc. Int. Astron. Union. 293, 378–381 (2014)Google Scholar
  58. 58.
    von Braun, K., Boyajian, T.: Extrasolar Planets and Their Host Stars. Spring. (2017)Google Scholar
  59. 59.
    Warner, B.: Properties of novae: an overview. In: Bode, M.F., Evans, A. (eds.) Classical Novae, pp. 16–33. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  60. 60.
    Zhao, M., Gies, D., Monnier, J.D., Thureau, N., Pedretti, E., Baron, F., Merand, A., ten Brummelaar, T., McAlister, H., Ridgway, S.T., Turner, N., Sturmann, J., Sturmann, L., Farrington, C., Goldfinger, P.J.: First Resolved Images of the Eclipsing and Interacting Binary β Lyrae. Astrophys. J. 684, L95 (2008)ADSCrossRefGoogle Scholar
  61. 61.
    Zhao, M., Monnier, J.D., Che, X., Pedretti, E., Thureau, N., Schaefer, G., ten Brummelaar, T., Mérand, A., Ridgway, S.T., McAlister, H., Turner, N., Sturmann, J., Sturmann, L., Goldfinger, P.J., Farrington, C.: Toward Direct Detection of Hot Jupiters with Precision Closure Phase: Calibration Studies and First Results from the CHARA Array. Publ. Astron. Soc. Pac. 123, 964–975 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Gail H. Schaefer
    • 1
  • Arnaud Cassan
    • 2
  • Alexandre Gallenne
    • 3
  • Rachael M. Roettenbacher
    • 4
  • Jean Schneider
    • 5
  1. 1.The CHARA Array of Georgia State UniversityMount WilsonUSA
  2. 2.Institut d’Astrophysique de ParisSorbonne Université, CNRS, UMR 7095ParisFrance
  3. 3.European Southern ObservatorySantiagoChile
  4. 4.Department of AstronomyStockholm UniversityStockholmSweden
  5. 5.Paris Observatory-LUThParisFrance

Personalised recommendations