Experimental Astronomy

, Volume 46, Issue 3, pp 389–399 | Cite as

A recent history of science cases for optical interferometry

  • Denis DefrèreEmail author
  • Conny Aerts
  • Makoto Kishimoto
  • Pierre Léna
Original Article
Part of the following topical collections:
  1. Future of Optical-infrared Interferometry in Europe


Optical long-baseline interferometry is a unique and powerful technique for astronomical research. Since the 1980’s (with I2T, GI2T, Mark I to III, SUSI, ...), optical interferometers have produced an increasing number of scientific papers covering various fields of astrophysics. As current interferometric facilities are reaching their maturity, we take the opportunity in this paper to summarize the conclusions of a few key meetings, workshops, and conferences dedicated to interferometry. We present the most persistent recommendations related to science cases and discuss some key technological developments required to address them. In the era of extremely large telescopes, optical long-baseline interferometers will remain crucial to probe the smallest spatial scales and make breakthrough discoveries.


Optical interferometry VLTI CHARA Stellar physics Planet formation AGN 



DD thanks the Belgian national funds for scientific research (FNRS). MK acknowledges support from JSPS under grant 16H05731.


  1. 1.
    Léna P.: The Early Days of the Very Large Telescope Interferometer. Proceedings of the ESO Workshop held in Garching, Germany, 4–8 April, 2005Google Scholar
  2. 2.
    Brummelaar, t., et al.: First results from the CHARA Array. II. A description of the instrument. Astrophys. J. 628, 453 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Fizeau H.,: R. Acad. Sci., 66, 932–934, 1868Google Scholar
  4. 4.
    Michelson, A.: Measurement of Jupiter’s satellites by interference. Nature. 45, 160–161 (1891)ADSCrossRefGoogle Scholar
  5. 5.
    Michelson, A., Pease: Measurement of the Diameter of α Orionis with the Interferometer. Astrophys. J. 53, 249–259 (1921)ADSCrossRefGoogle Scholar
  6. 6.
    Labeyrie, A: “Speckle interferometer for 0.02”, stellar resolution. In: Reiz, A., Lausten, S. (eds.) Auxiliary Instrumentation for Large Telescopes, ESO/SRC/CERN Conference, p. 389–393 (1972)Google Scholar
  7. 7.
    Pacini, F. et al.: Optical telescopes of the future. Proceedings of an ESO Conference, Geneva, 12–15 Dec 1977Google Scholar
  8. 8.
    Surdej J. et al.: Science cases for next generation optical/infrared interferometric facilities (the post VLTI era). Proceedings of the 37th Liège International Astrophysical Colloquium (23-25 August 2004), Liège UniversityGoogle Scholar
  9. 9.
    Surdej J. et al.: Technology roadmap for future interferometric facilities. Proceedings of the European Interferometry Initiative workshop organized in the context of the 2005 Joint European and National Astronomy meeting ‘Distant Worlds’ (6-8 July 2005), Liège UniversityGoogle Scholar
  10. 10.
    Richichi, A., Delplancke, F., Paresce, F., Chelli, A.:The Power of Optical/IR Interferometry: Recent Scientific Results and 2nd Generation Instrumentation. Proceedings of the ESO Workshop held in Garching, Germany, 4–8 April 2005Google Scholar
  11. 11.
    Abuter et al.: (GRAVITY collaboration), “First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer”, A&A 602, A94, 2017Google Scholar
  12. 12.
    Surdej J. and Pott J.-U.: Colloquium recommendations: next steps into the future. Proceedings of Haute Provence Observatory Colloquium, 23-27, 2013Google Scholar
  13. 13.
    Darré, P., Delage, P.L., Grossard, L.,Reynaud, F., Gomes, J.-T., Scott, N.J., Sturmann, J., Farrington, C., Ten Brummelaar, T.: First fringes on the sky with an upconversion interferometer tested on a telescope array. Phys. Rev. Lett. 117(23), 2016Google Scholar
  14. 14.
    Labeyrie, A.: Resolved imaging of extra-solar planets with 10-100 km optical interferometric arrays. Astr. Ap. Suppl. 118, 517 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    Labeyrie, A.: Hypertelescopes: the challenge of direct imaging at high resolution. In New Concepts in Imaging: Optical and Statistical Models, D. Mary, C. Theys & C. Aime (Eds.) EAS Publications Series, 59, 5–23, 2013Google Scholar
  16. 16.
    Cockell et al.: Darwin-A Mission to Detect and Search for Life on Extrasolar Planets. 13. Astrobiology. 9(1) pp. 1–22, 2009Google Scholar
  17. 17.
    Marr, J.: Space Interferometry Mission: overview and current status. Proc. SPIE. 4852, 1–15 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Beichman, et al.: Status of the terrestrial planet finder interferometer (TPF-I). Proc. SPIE. 6268, 62680S (2006)CrossRefGoogle Scholar
  19. 19.
    Aerts, C.: The age and interior rotation of stars from Asteroseismology. Astron. Nachr. 336, 477 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Chaplin, W.J., Miglio, A.: Asteroseismology of solar-type and red-Giant stars. Annual Review of A&A. 51, 353 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Aerts, C., et al.: The interior angular momentum of Core hydrogen burning stars from Gravity-mode oscillations. ApJL. 847, L7 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    Eggenberger, et al.: Constraining the efficiency of angular momentum transport with asteroseismology of red giants: the effect of stellar mass. A&A. 599, A18 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    Rauer, H., Catala, C., Aerts, C., et al.: The PLATO 2.0 mission. Exp. Astron. 38, 249 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Ricker, G. R., Vanderspek, R., Winn, J., et al.: The Transiting Exoplanet Survey Satellite. Proc. SPIE, Vol. 9904, Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, 99042B, 2016Google Scholar
  25. 25.
    Zwintz, K., et al.: Echography of young stars reveals their evolution. Science. 345, 550 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Huber, D., et al.: Fundamental properties of Kepler planet-candidate host stars using Asteroseismology. ApJ. 767, 127 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Sana, H., et al.: Binary interaction dominates the evolution of massive stars. Science. 337, 444 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Sana, H., et al.: Southern massive stars at high angular resolution: observational campaign and companion detection. ApJS. 215, 15 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    Roettenbacher, R.M., et al.: No sun-like dynamo on the active star ζ Andromedae from starspot asymmetry. Nature. 533(7602), 217–220 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    Roettenbacher, R.M., et al.: No sun-like dynamo on the active star ζ Andromedae from starspot asymmetry. ApJ. 849, 120 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    Gizon, L., Birch, A.C.: Local helioseismology. Living Rev. Sol. Phys. 2, 6 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    Stee P. et al.: Science cases for a visible interferometer. white paper, arXiv:1703.02395, 2017Google Scholar
  33. 33.
    Millan-Gabet R. et al.: How and When do Planets Form? The Inner Regions of Planet Forming Discs at High Spatial and Spectral Resolution. Astro2010 Science White Paper - Planetary and Star Formation (PSF) (2009)Google Scholar
  34. 34.
    Kraus S. et al: A hot compact dust disc around a massive young stellar object. Nature 446, 2010Google Scholar
  35. 35.
    Creech-Eakman et al.: Science at very high resolution: the expected and the unexpected”, Report of the United States Interferometry Consortium, 2010Google Scholar
  36. 36.
    Lopez B. et al. An overview of the MATISSE instrument — science, concept and current status. ESO Messenger 157, 2014Google Scholar
  37. 37.
    Mourard, et al.: SPICA, stellar parameters and images with a Cophased Array: a 6T visible combiner for the CHARA array. J. Opt. Soc. Am. A. 3(5), A37 (2017)CrossRefGoogle Scholar
  38. 38.
    Swain, M., et al.: Interferometer observations of Subparsec-scale infrared emission in the nucleus of NGC 4151. ApJL. 596, L163–L166 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    Wittkowski, M., et al.: VLTI/VINCI observations of the nucleus of NGC 1068 using the adaptive optics system MACAO. A&A. 418, L39–L42 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    Jaffe, W., et al.: The central dusty torus in the active nucleus of NGC 1068. Nature. 429, 47–49 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    Meisenheimer, K., et al.: Resolving the innermost parsec of Centaurus a at mid-infrared wavelengths. A&A. 471, 453–465 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    Tristram, K.R.W., et al.: Resolving the complex structure of the dust torus in the active nucleus of the Circinus galaxy. A&A. 474, 837–850 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    Raban, D., et al.: Resolving the obscuring torus in NGC 1068 with the power of infrared interferometry: revealing the inner funnel of dust. MNRAS. 394, 1325–1337 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    Burtscher, L., et al.: Dust emission from a parsec-scale structure in the Seyfert 1 nucleus of NGC 4151. ApJL. 705, L53–L57 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    Kishimoto, M., et al.: Exploring the inner region of type 1 AGN with the keck interferometer. A&A. 507, L57–L60 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    Pott, J., et al.: Luminosity-variation independent location of the Circum-nuclear, hot dust in NGC 4151. ApJ. 715, 736–742 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    Kishimoto, M., et al.: The innermost dusty structure in active galactic nuclei as probed by the keck interferometer. A&A. 527, A121 (2011a)ADSCrossRefGoogle Scholar
  48. 48.
    Kishimoto, M., et al.: Mapping the radial structure of AGN tori. A&A. 536, A78 (2011b)ADSCrossRefGoogle Scholar
  49. 49.
    Weigelt, G., et al.: VLTI/AMBER observations of the Seyfert nucleus of NGC 3783. A&A. 541, L9 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    Hönig, S.F., et al.: Parsec-scale dust emission from the polar region in the type 2 nucleus of NGC 424. ApJ. 755, 149 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    Hönig, S.F., et al.: Dust in the polar region as a major contributor to the infrared emission of active galactic nuclei. ApJ. 771, 87 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    Burtscher, L., et al.: A diversity of dusty AGN tori. Data release for the VLTI/MIDI AGN large program and first results for 23 galaxies. A&A. 558, A149 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    Tristram, K.R.W., et al.: The dusty torus in the Circinus galaxy: a dense disc and the torus funnel. A&A. 563, A82 (2014)ADSCrossRefGoogle Scholar
  54. 54.
    López-Gonzaga, N., et al.: Revealing the large nuclear dust structures in NGC 1068 with MIDI/VLTI. A&A. 565, A71 (2014)ADSCrossRefGoogle Scholar
  55. 55.
    Véron-Cetty, M.-P., Véron, P.: A catalogue of quasars and active nuclei: 13th edition. A&A. 518, A10 (2010)ADSCrossRefGoogle Scholar
  56. 56.
    Petrov, R. G. et al.: VLTI/AMBER differential interferometry of the broad-line region of the quasar 3C273. SPIE 8445, 2012Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.ULiège: Space sciences, Technologies and Astrophysics Research (STAR) InstituteUniversité de LiègeLiègeBelgium
  2. 2.ULeu: Institute of AstronomyLeuvenBelgium
  3. 3.UKyo: Kyoto Sangyo UniversityKyotoJapan
  4. 4.LESIA: Observatoire de Paris-MeudonParisFrance

Personalised recommendations