Experimental Astronomy

, Volume 45, Issue 2, pp 177–199 | Cite as

The hydrogen epoch of reionization array dish III: measuring chromaticity of prototype element with reflectometry

  • Nipanjana Patra
  • Aaron R. Parsons
  • David R. DeBoer
  • Nithyanandan Thyagarajan
  • Aaron Ewall-Wice
  • Gilbert Hsyu
  • Tsz Kuk Leung
  • Cherie K. Day
  • Eloy de Lera Acedo
  • James E. Aguirre
  • Paul Alexander
  • Zaki S. Ali
  • Adam P. Beardsley
  • Judd D. Bowman
  • Richard F. Bradley
  • Chris L. Carilli
  • Carina Cheng
  • Joshua S. Dillon
  • Gcobisa Fadana
  • Nicolas Fagnoni
  • Randall Fritz
  • Steve R. Furlanetto
  • Brian Glendenning
  • Bradley Greig
  • Jasper Grobbelaar
  • Bryna J. Hazelton
  • Daniel C. Jacobs
  • Austin Julius
  • MacCalvin Kariseb
  • Saul A. Kohn
  • Anna Lebedeva
  • Telalo Lekalake
  • Adrian Liu
  • Anita Loots
  • David MacMahon
  • Lourence Malan
  • Cresshim Malgas
  • Matthys Maree
  • Zachary Martinot
  • Nathan Mathison
  • Eunice Matsetela
  • Andrei Mesinger
  • Miguel F. Morales
  • Abraham R. Neben
  • Samantha Pieterse
  • Jonathan C. Pober
  • Nima Razavi-Ghods
  • Jon Ringuette
  • James Robnett
  • Kathryn Rosie
  • Raddwine Sell
  • Craig Smith
  • Angelo Syce
  • Max Tegmark
  • Peter K. G. Williams
  • Haoxuan Zheng
Original Article
  • 17 Downloads

Abstract

Spectral structures due to the instrument response is the current limiting factor for the experiments attempting to detect the redshifted 21 cm signal from the Epoch of Reionization (EoR). Recent advances in the delay spectrum methodology for measuring the redshifted 21 cm EoR power spectrum brought new attention to the impact of an antenna’s frequency response on the viability of making this challenging measurement. The delay spectrum methodology provides a somewhat straightforward relationship between the time-domain response of an instrument that can be directly measured and the power spectrum modes accessible to a 21 cm EoR experiment. In this paper, we derive the explicit relationship between antenna reflection coefficient (S11) measurements made by a Vector Network Analyzer (VNA) and the extent of additional foreground contaminations in delay space. In the light of this mathematical framework, we examine the chromaticity of a prototype antenna element that will constitute the Hydrogen Epoch of Reionization Array (HERA) between 100 and 200 MHz. These reflectometry measurements exhibit additional structures relative to electromagnetic simulations, but we find that even without any further design improvement, such an antenna element will support measuring spatial k modes with line-of-sight components of k > 0.2h Mpc− 1. We also find that when combined with the powerful inverse covariance weighting method used in optimal quadratic estimation of redshifted 21 cm power spectra the HERA prototype elements can successfully measure the power spectrum at spatial modes as low as k > 0.1h Mpc− 1. This work represents a major step toward understanding the HERA antenna element and highlights a straightforward method for characterizing instrument response for future experiments designed to detect the 21 cm EoR power spectrum.

Keywords

Astronomical instrumentation Methods and techniques wideband radio interferometry Delay spectrum technique–EoR power spectrum 21 cm cosmology 

Notes

Acknowledgements

This work was supported by the U.S. National Science Foundation (NSF) through awards AST-1440343 & AST-1410719. ARP acknowledges support from NSF CAREER award 13 52519. AL acknowledges support by NASA through Hubble Fellowship grant #HST-HF2-51363.001-A awarded by the Space Telescope Science Institute, operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. This work is completed as part of the University of California Cosmic Dawn Initiative. AL, ARP, and SRF acknowledge support from the UC Office of the President Multicampus Research Programs and Initiatives through award MR-15-328388.

References

  1. 1.
    Ali, Z.S., Parsons, A.R., Zheng, H., et al.: PAPER-64 constraints on reionization: the 21 cm power spectrum at z = 8.4. ApJ 809, 61 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    Barry, N., Hazelton, B., Sullivan, I., Morales, M.F., Pober, J.C.: Calibration requirements for detecting the 21 cm epoch of reionization power spectrum and implications for the SKA. MNRAS 461, 3135 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    Bock, D.C.-J., Large, M.I., Sadler, E.M.: Instrumentation: interferometers, radio continuum, surveys. AJ 117, 1578 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    Bowman, J.D., Morales, M.F., Hewitt, J.N.: Foreground contamination in interferometric measurements of the redshifted 21 cm power spectrum. ApJ 695, 183 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Bowman, J.D., Rogers, A.E.E.: A lower limit of Δz > 0.06 for the duration of the reionization epoch. Nature 468, 796 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Condon, J.J., Cotton, W.D., Greisen, E.W., et al.: The NRAO VLA sky survey. AJ 115, 1693 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    Datta, A., Bowman, J.D., Carilli, C.L.: Bright source subtraction requirements for redshifted 21 cm measurements. ApJ 724, 526 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    de Oliveira-Costa, A., Tegmark, M., Gaensler, B.M., et al.: A model of diffuse Galactic radio emission from 10 MHz to 100 GHz. MNRAS 388, 247 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    DeBoer, D.R., Parsons, A.R., Aguirre, J.E., et al.: Hydrogen Epoch of Reionization Array (HERA). Publ. Astron. Soc. Pac. 129(2017), 045001 (2016)ADSGoogle Scholar
  10. 10.
    Dillon, J.S., Liu, A., Tegmark, M.: A fast method for power spectrum and foreground analysis for 21 cm cosmology. Phys. Rev. D 87, 043005 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Dillon, J.S., Liu, A., Williams, C.L., et al.: Overcoming real-world obstacles in 21 cm power spectrum estimation: A method demonstration and results from early Murchison Widefield array data. Phys. Rev. D 89, 023002 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Ewall-Wice, A., Bradley, R., Deboer, D., et al.: The HERA Dish II: electromagnetic simulations and science implications. Astrophys. J. 831(2), 17 (2016). article id. 196ADSCrossRefGoogle Scholar
  13. 13.
    Furlanetto, S.R., Oh, S.P., Briggs, F.H.: Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe. Phys. Rep. 433, 181 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Kohn, S.A., Aguirre, J.E., Nunhokee, C.D., et al.: Constraining polarized foregrounds for EoR experiments I: 2D power spectra from the PAPER-32 imaging array. ApJ 823, 88 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Lidz, A., Zahn, O., McQuinn, M., Zaldarriaga, M., Hernquist, L.: Detecting the rise and fall of 21 cm fluctuations with the Murchison widefield array. ApJ 680, 962 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Liu, A., Parsons, A.R., Trott, C.M.: Epoch of reionization window. II. statistical methods for foreground wedge reduction. Phys. Rev. D 90, 023018 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Liu, A., Parsons, A.R., Trott, C.M.: Epoch of reionization window. I. Mathematical formalism. Phys. Rev. D 90, 023019 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Loeb, A., Zaldarriaga, M.: Measuring the small-scale power spectrum of cosmic density fluctuations through 21cm tomography prior to the epoch of structure formation. Phys. Rev. Lett. 92, 211301 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    Madau, P., Meiksin, A., Rees, M.J.: 21 Centimeter tomography of the intergalactic medium at high redshift. ApJ 475, 429 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    Mauch, T., Murphy, T., Buttery, H.J., et al.: SUMSS: A wide-field radio imaging survey of the southern sky - II. The source catalogue. MNRAS 342, 1117 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Mellema, G., Koopmans, L.V.E., Abdalla, F.A., et al.: Reionization and the cosmic dawn with the square kilometre array. Exp. Astron. 36, 235 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Mesinger, A., Furlanetto, S., Cen, R.: 21CMFAST: a fast, seminumerical simulation of the high-redshift 21-cm signal. MNRAS 411, 955 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Morales, M.F., Hazelton, B., Sullivan, I., Beardsley, A.: Four fundamental foreground power spectrum shapes for 21 cm cosmology observations. ApJ 752, 137 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Morales, M.F., Wyithe, J.S.B.: Reionization and cosmology with 21-cm fluctuations. ARA&A 48, 127 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Neben, A.R., Bradley, R.F., Hewitt, J.N., et al.: The hydrogen epoch of reionization array dish. I. Beam pattern measurements and science implications. ApJ 826, 199 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Paciga, G., Chang, T.-C., Gupta, Y., et al.: The GMRT Epoch of reionization experiment: a new upper limit on the neutral hydrogen power spectrum at z8.6. MNRAS 413, 1174 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Parsons, A.R., Backer, D.C.: Calibration of low-frequency, wide-field radio interferometers using delay/delay-rate filtering. AJ 138, 219 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Parsons, A.R., Backer, D.C., Foster, G.S., et al.: The precision array for probing the Epoch of re-ionization: eight station results. AJ 139, 1468 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Parsons, A., Pober, J., McQuinn, M., Jacobs, D., Aguirre, J.: A sensitivity array-configuration study for measuring the power spectrum of 21 cm emission from reionization. ApJ 753, 81 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Parsons, A.R., Pober, J.C., Aguirre, J.E., et al.: A Per-baseline, delay-spectrum technique for accessing the 21 cm cosmic reionization signature. ApJ 756, 165 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Parsons, A.R., Liu, A., Aguirre, J.E., et al.: New limits on 21 cm Epoch of reionization from PAPER-32 consistent with an x-ray heated intergalactic medium at z = 7.7. ApJ 788, 106 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    Patra, N., Subrahmanyan, R., Raghunathan, A., UdayaShankar, N.: Bandpass calibration of a wideband spectrometer using coherent pulse injection. Exp. Astron. 36, 319 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Patra, N., Subrahmanyan, R., Sethi, S., Udaya Shankar, N., Raghunathan, A.: Saras measurement of the radio background at long wavelengths. ApJ 801, 138 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    Patra, N., Bray, J.D., Roberts, P., Ekers, R.D.: Bandpass calibration of a wideband spectrometer using coherent pulse injection. Exp. Astron. 43(2), 119–129 (2017)Google Scholar
  35. 35.
    Pober, J.C., Parsons, A.R., Aguirre, J.E., et al.: Opening the 21 cm Epoch of reionization window: measurements of foreground isolation with PAPER. ApJ 768, L36 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    Pober, J.C., Liu, A, Dillon, J.S., Aguirre, J.E., et al.: What next-generation 21 cm power spectrum measurements can teach us about the Epoch of reionization. ApJ 782(2), article id. 66 25 (2014)CrossRefGoogle Scholar
  37. 37.
    Presley, M., Liu, A., Parsons, A.: Measuring the cosmological 21 cm monopole with an interferometer. arXiv:abs/1501.01633 (2015)
  38. 38.
    Pritchard, J.R., Loeb, A.: Evolution of the 21cm signal throughout cosmic history. Rep. Prog. Phys. 75, 086901 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    Shaver, P.A., Windhorst, R.A., Madau, P., de Bruyn, A.G.: Can the reionization epoch be detected as a global signature in the cosmic background?. A&A 345, 380 (1999)ADSGoogle Scholar
  40. 40.
    Sokolowski, M., Tremblay, S.E., Wayth, R.B., Tingay, S.J., et al.: BIGHORNS - Broadband Instrument for Global HydrOgen ReioNisation Signal. Publ. Astron. Soc. Aust. 32, id.e004 18 (2015)Google Scholar
  41. 41.
    Thyagarajan, N., Udaya Shankar, N., Subrahmanyan, R., et al.: A study of fundamental limitations to statistical detection of redshifted H I from the Epoch of Reionization. ApJ 776, 6 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    Thyagarajan, N., Parsons, A.R., DeBoer, D.R., et al.: Effects of antenna beam chromaticity on redshifted 21 cm power spectrum and implications for hydrogen Epoch of Reionization array. ApJ 825, 9 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    Thyagarajan, N., Jacobs, D.C., Bowman, J.D., et al.: Foregrounds in wide-field redshifted 21 cm power spectra. ApJ 804, 14 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    Tingay, S.J., Goeke, R., Bowman, J.D., Emrich, D., Ord, S.M., Mitchell, D.A., Morales, M.F., et al.: The Murchison widefield array: the square kilometre array precursor at low radio frequencies. Publ. Astron. Soc. Aust. 30, id.e007 21 (2013)Google Scholar
  45. 45.
    Trott, C.M., Wayth, R.B., Tingay, S.: The impact of point-source subtraction residuals on 21 cm Epoch of Reionization estimation. ApJ 757, 101 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    van Haarlem, M.P., Wise, M.W., Gunst, A.W., et al.: LOFAR: the low-frequency array. A&A 556, A2 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    Vedantham, H., Udaya Shankar, N., Subrahmanyan, R.: Imaging the Epoch of reionization: limitations from foreground confusion and imaging algorithms. Mon. Not. R. Astron. Soc. 450(3), 2291–2305Google Scholar
  48. 48.
    Voytek, T.C.: PhD thesis, Carnegie Mellon University; Probing the Dark Ages at z20: The SCI-HI 21 cm All-sky Spectrum Experiment (2015)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Nipanjana Patra
    • 1
  • Aaron R. Parsons
    • 1
  • David R. DeBoer
    • 1
  • Nithyanandan Thyagarajan
    • 2
    • 7
  • Aaron Ewall-Wice
    • 15
  • Gilbert Hsyu
    • 1
  • Tsz Kuk Leung
    • 1
  • Cherie K. Day
    • 1
  • Eloy de Lera Acedo
    • 5
  • James E. Aguirre
    • 4
  • Paul Alexander
    • 5
  • Zaki S. Ali
    • 1
  • Adam P. Beardsley
    • 2
  • Judd D. Bowman
    • 2
  • Richard F. Bradley
    • 6
  • Chris L. Carilli
    • 5
    • 7
  • Carina Cheng
    • 1
  • Joshua S. Dillon
    • 1
  • Gcobisa Fadana
    • 8
  • Nicolas Fagnoni
    • 5
  • Randall Fritz
    • 8
  • Steve R. Furlanetto
    • 12
  • Brian Glendenning
    • 7
  • Bradley Greig
    • 14
  • Jasper Grobbelaar
    • 8
  • Bryna J. Hazelton
    • 9
  • Daniel C. Jacobs
    • 2
  • Austin Julius
    • 8
  • MacCalvin Kariseb
    • 8
  • Saul A. Kohn
    • 4
  • Anna Lebedeva
    • 1
  • Telalo Lekalake
    • 8
  • Adrian Liu
    • 1
  • Anita Loots
    • 8
  • David MacMahon
    • 1
  • Lourence Malan
    • 8
  • Cresshim Malgas
    • 8
  • Matthys Maree
    • 8
  • Zachary Martinot
    • 4
  • Nathan Mathison
    • 8
  • Eunice Matsetela
    • 8
  • Andrei Mesinger
    • 14
  • Miguel F. Morales
    • 9
  • Abraham R. Neben
    • 3
  • Samantha Pieterse
    • 8
  • Jonathan C. Pober
    • 11
  • Nima Razavi-Ghods
    • 5
  • Jon Ringuette
    • 10
  • James Robnett
    • 7
  • Kathryn Rosie
    • 8
  • Raddwine Sell
    • 8
  • Craig Smith
    • 8
  • Angelo Syce
    • 8
  • Max Tegmark
    • 3
  • Peter K. G. Williams
    • 13
  • Haoxuan Zheng
    • 3
  1. 1.University of California at BerkeleyBerkeleyUSA
  2. 2.School of Earth and Space ExplorationArizona State UniversityTempeUSA
  3. 3.Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaUSA
  5. 5.Cavendish AstrophysicsUniversity of CambridgeCambridgeUK
  6. 6.National Radio Astronomy ObservatoryCharlottesvilleUSA
  7. 7.National Radio Astronomy ObservatorySocorroUSA
  8. 8.SKA-SACape TownSouth Africa
  9. 9.Department of Physics and eScience InstituteUniversity of WashingtonSeattleUSA
  10. 10.Fred Hutchinson Cancer InstituteSeattleUSA
  11. 11.Department of PhysicsBrown UniversityProvidenceUSA
  12. 12.Department of Physics and AstronomyUniversity of CaliforniaLos AngelesUSA
  13. 13.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  14. 14.Scuola Normale SuperiorePisaItaly
  15. 15.Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations