Experimental Astronomy

, Volume 44, Issue 2, pp 209–237 | Cite as

High contrast observations of bright stars with a starshade

  • Anthony HarnessEmail author
  • Webster Cash
  • Steve Warwick
Original Article


Starshades are a leading technology to enable the direct detection and spectroscopic characterization of Earth-like exoplanets. In an effort to advance starshade technology through system level demonstrations, the McMath-Pierce Solar Telescope was adapted to enable the suppression of astronomical sources with a starshade. The long baselines achievable with the heliostat provide measurements of starshade performance at a flight-like Fresnel number and resolution, aspects critical to the validation of optical models. The heliostat has provided the opportunity to perform the first astronomical observations with a starshade and has made science accessible in a unique parameter space, high contrast at moderate inner working angles. On-sky images are valuable for developing the experience and tools needed to extract science results from future starshade observations. We report on high contrast observations of nearby stars provided by a starshade. We achieve 5.6 × 10− 7 contrast at 30 arcseconds inner working angle on the star Vega and provide new photometric constraints on background stars near Vega.


Starshades High contrast Direct imaging 



This work was supported by a Strategic University Research Partnership between CU and JPL with Co-I Randy Pollock. AH was supported at CU by a NASA Space Technology Research Fellowship (NNX13AM71H). The authors would like to thank Richard Capps (JPL) for suggesting the use of McMath. The authors would like to thank Detrick Branston for excellent observing support at McMath and Ann Shipley, Ben Zeiger, Danny Smith, and Michael Richards for assistance during observing runs. AH would also like to thank Wayne Green. The authors thank the anonymous referee for the very useful suggestions and comments. The McMath-Pierce Solar Telescope facility is operated by the National Solar Observatory. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy under a cooperative agreement with the National Science Foundation.


  1. 1.
    Bohlin, R.C.: Spectrophotometric Standards From the far-UV to the near-IR on the White Dwarf Flux Scale. AJ 111, 1743 (1996). ADSCrossRefGoogle Scholar
  2. 2.
    Cady, E., Balasubramanian, K., Carr, M., Dickie, M., Echternach, P., Kasdin, J., Shaklan, S., Sirbu, D., White, V.: Broadband suppression and occulter position sensing at the Princeton occulter testbed. In: Space Telescopes and Instrumentation 2010: Optical, Infrared, and Millimeter Wave, Proc. SPIE, vol. 7731, p. 77312F (2010).
  3. 3.
    Cash, W.: Detection of Earth-like planets around nearby stars using a petal-shaped occulter. Nature 442, 51–53 (2006). ADSCrossRefGoogle Scholar
  4. 4.
    Cutri, R.M., Skrutskie, M.F., van Dyk, S., Beichman, C.A., Carpenter, J.M., Chester, T., Cambresy, L., Evans, T., Fowler, J., Gizis, J., Howard, E., Huchra, J., Jarrett, T., Kopan, E.L., Kirkpatrick, J.D., Light, R.M., Marsh, K.A., McCallon, H., Schneider, S., Stiening, R., Sykes, M., Weinberg, M., Wheaton, W.A., Wheelock, S., Zacarias, N.: Vizier online data catalog: 2MASS all-sky catalog of point sources (Cutri+ 2003). VizieR Online Data Catalog 2246 (2003)Google Scholar
  5. 5.
    Glassman, T., Casement, S., Warwick, S., Novicki, M.: Measurements of high-contrast starshade performance. In: Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave, Proc. SPIE, vol. 9143, p. 91432O (2014).
  6. 6.
    Harness, A., Cash, W., Shipley, A., Glassman, T., Warwick, S.: New worlds airship. In: Techniques and Instrumentation for Detection of Exoplanets VI, Proc. SPIE, vol. 8864, p. 886407 (2013).
  7. 7.
    Harness, A., Warwick, S., Shipley, A., Cash, W.: Ground-based testing and demonstrations of starshades. In: Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, Proc. SPIE, vol. 9904, p. 99043I (2016).
  8. 8.
    Harness, A.D.: High Contrast Astronomy with Starshades. Ph.D. Thesis, University of Colorado at Boulder (2016)Google Scholar
  9. 9.
    Kim, Y., Harness, A., Sirbu, D., Hu, M., Galvin, M., Kasdin, N., Vanderbei, R., Shaklan, S.: Optical demonstration of a starshade at flight fresnel numbers. In: Techniques and Instrumentation for Detection of Exoplanets VIII, Proc. SPIE, vol. 10400, p. 104001A (2017).
  10. 10.
    Kim, Y., Sirbu, D., Galvin, M., Kasdin, N.J., Vanderbei, R.J.: Experimental study of starshade at flight fresnel numbers in the laboratory. In: Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, Proc. SPIE, vol. 9904, p. 99043G (2016).
  11. 11.
    Leviton, D.B., Cash, W.C., Gleason, B., Kaiser, M.J., Levine, S.A., Lo, A.S., Schindhelm, E., Shipley, A.F.: White-light demonstration of one hundred parts per billion irradiance suppression in air by new starshade occulters. In: UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts III, Proc. SPIE, vol. 6687, p. 66871B (2007).
  12. 12.
    Novicki, M., Warwick, S., Smith, D., Richards, M., Harness, A.: Suppression of astronomical sources using the mcmath-pierce solar telescope and starshades with flight-like optics. In: Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, Proc. SPIE, vol. 9904, p. 26 (2016).
  13. 13.
    Phillips, N.M., Greaves, J.S., Dent, W.R.F., Matthews, B.C., Holland, W.S., Wyatt, M.C., Sibthorpe, B.: Target selection for the SUNS and DEBRIS surveys for debris discs in the solar neighbourhood. MNRAS 403, 1089–1101 (2010). ADSCrossRefGoogle Scholar
  14. 14.
    Roddier, F.: The effects of atmospheric turbulence in optical astronomy. Progress in optics, vol. 19, pp. 281–376. North-Holland Publishing Co., Amsterdam (1981). Google Scholar
  15. 15.
    Roeser, S., Bastian, U.: A new star catalogue of SAO type. A&AS 74, 449–451 (1988)ADSGoogle Scholar
  16. 16.
    Samuele, R., Glassman, T., Johnson, A.M.J., Varshneya, R., Shipley, A.: Starlight suppression from the starshade testbed at NGAS. In: Techniques and Instrumentation for Detection of Exoplanets IV, Proc. SPIE, vol. 7440, p. 744004 (2009).
  17. 17.
    Scharf, D.P., Martin, S.R., Liebe, C.C., Rahman, Z.H., Seubert, C.R., Noecker, M.C., Purcell, G.H.: Precision formation flying at megameter separations for exoplanet characterization. Acta Astronaut. 123, 420–434 (2016). ADSCrossRefGoogle Scholar
  18. 18.
    Sirbu, D., Kim, Y., Kasdin, N., Vanderbei, R.: Diffraction-based sensitivity analysis for an external occulter laboratory demonstration. Appl. Opt. 55 (22), 6083–6094 (2016). ADSCrossRefGoogle Scholar
  19. 19.
    Sorgenfrei, M., Kemp, D., Harness, A., Nehrenz, M.: Validation of a low-cost avionics package for small spacecraft via rocket-based field tests. In: 55th AIAA Aerospace Sciences Meeting, p. 168 (2017)Google Scholar
  20. 20.
    Wenger, M., Ochsenbein, F., Egret, D., Dubois, P., Bonnarel, F., Borde, S., Genova, F., Jasniewicz, G., Laloë, S., Lesteven, S., Monier, R.: The SIMBAD astronomical database. The CDS reference database for astronomical objects. A&AS 143, 9–22 (2000). ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Astrophysical & Planetary SciencesUniversity of Colorado BoulderBoulderUSA
  2. 2.Northrop Grumman Aerospace SystemsRedondo BeachUSA
  3. 3.Department of Mechanical & Aerospace EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations