Advertisement

Experimental Astronomy

, Volume 46, Issue 1, pp 31–44 | Cite as

Transit spectroscopy of temperate Jupiters with ARIEL: a feasibility study

  • Thérèse EncrenazEmail author
  • G. Tinetti
  • A. Coustenis
Original Article

Abstract

Several temperate Jupiters have been discovered to date, but most of them remain to be detected. In this note, we analyse the expected infrared transmission spectrum of a temperate Jupiter, with an equilibrium temperature ranging between 350 and 500 K. We estimate its expected amplitude signal through a primary transit, and we analyse the best conditions for the host star to be filled in order to optimize the S/N ratio of its transmission spectrum. Calculations show that temperate Jupiters around M stars could have an amplitude signal higher than 10−4 in primary transits, with revolution periods of a few tens of days and transit durations of a few hours. In order to enlarge the sampling of exoplanets to be observed with ARIEL (presently focussed on objects warmer than 500 K), such objects could be considered as additional possible targets for the mission.

Keywords

Exoplanets Transit spectroscopy Infrared spectroscopy 

Notes

Acknowledgements

We acknowledge support from the French National Research Agency (ANR) project (contract ANR-16-CE31-0005-03). G.T acknowledges support from the ERC Project Exolights (id. 617119).

References

  1. 1.
    Bolton, S.J., et al.: Jupiter’s interior and deep atmosphere: the initial pole-to-pole passes with the Juno spacecraft. Science. 356, 6340–6344 (2017)CrossRefGoogle Scholar
  2. 2.
    Clanton, C., Gaudi, B.S.: Synthetizing exoplanet demographics from radial velocity and microlensing surveys. II. The frequency of planets orbiting M-dwarfs. Astrophys. J. 791, 91 (2014) (23pp)ADSCrossRefGoogle Scholar
  3. 3.
    Encrenaz, T., et al.: The atmospheric composition and structure of Jupiter and Saturn from ISO observations: what have we learnt? Plan. Space Sci. 47, 1225–1242 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    Gillon, M., et al.: Seven temperate terrestrial planets around the nearby utra-cool dwarf star TRAPPIST-1. Nature. 542, 456–460 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Grevesse, N., Asplund, M., Sauval, A.J.: The new solar chemical composition. EAS Publ. Ser. 17, 21–30 (2005)CrossRefGoogle Scholar
  6. 6.
    Henry, T., Walkowicz, L.M., Barto, T.C., Golimowsky, D.A.: Astron. J. 123, 2002–2009 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Kasting, J.F., Whitmire, D.P., Reynolds, R.T.: Habitable zones around main-sequence stars. Icarus. 101, 108–128 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    Lainey, V.: Quantification of tidal parameters from solar system data. Celest. Mech. Dyn. Astron. 126, 145–156 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Léger, A., et al.: Transiting exoplanets from the CoRoT space mission. VIII CoRoT-7 b: the first super-earth with measured radius. Astron. Astrophys. 506, 287–302 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Morley, C.V., et al.: Neglected clouds in T and Y dwarf atmospheres. Astrophys. J. 756, 172 (2012) (17pp)ADSCrossRefGoogle Scholar
  11. 11.
    Murray, C.D., Dermott, S.F.: Solar system dynamics. Cambride University Press, Cambridge (2000)CrossRefGoogle Scholar
  12. 12.
    Owen, T., Encrenaz, T.: Compositional constraints on giant planet formation. Plan. Space Sci. 54, 1188–1196 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Owen, T., McKellar, A.R.W., Encrenaz, T., et al.: A study of the 1.56-μm band of NH3 on Jupiter and Saturn. Astron. Astrophys. 54, 291–295 (1977) 61, 147-147ADSGoogle Scholar
  14. 14.
    Pollack, J.B., et al.: Formation of the giant planets by concurrent accretion of solids and gas. Icarus. 124, 62–85 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    Rajpurohit, A.S., Reylé, C., Allard, F., et al.: Astron. Astrophys. 556, A15 (2013)CrossRefGoogle Scholar
  16. 16.
    Reylé, C., Scholz, R. D., Schultheis, M. et al.: Optical spectroscopy of high proper motion stars: new M dwarfs within 10 pc and the closest pair of subdwarfs. Month. Not. R. Astron. Soc. 373, 705–714 (2016)Google Scholar
  17. 17.
    Robin, A., Reylé, C., Luri, X., et al.: Mem. S. A. It. 85, 560 (2014)ADSGoogle Scholar
  18. 18.
    Rowe, J.F., Matthews, J.M., Seager, S., et al.: The very low albedo of an extrasolar planet: MOST space-based photometry of HD 209458. Astrophys. J. 689, 1345–1353 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Schneider, J., Deldieu, C., Le Sidaner, P., et al.: Defining and cataloguing exoplanets: the exoplanet.eu database. Astron. Astrophys. 532, A79 (2011)CrossRefGoogle Scholar
  20. 20.
    Sudarsky, D., Burrows, A., Pinto, P.: Albedos and reflection spectra of extrasolar giant planets. Astrophys. J. 588, 1121–1148 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    Tinetti, G. et al.: The EChO Mission Proposal – a candidate for the ESA M3 mission (2011)Google Scholar
  22. 22.
    Tinetti, G., Encrenaz, T., Coustenis, A.: Spectroscopy of planetary atmospheres in our galaxy. Astron. Astrophys. Rev. 21, 63 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Tinetti, G. et al.: The ARIEL Mission Proposal – a candidate for the ESA M4 mission (2015)Google Scholar
  24. 24.
    Zingales, T., Tinetti, G., Pillitteri, I. et al.: The ARIEL mission reference sample. Experimental Astronomy (2017, in press)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.LESIA, Observatoire de Paris, CNRSPSL Universities, UPMC, UDDMeudonFrance
  2. 2.Department of Physics and AstronomyUniversity College LondonLondonUK

Personalised recommendations