Experimental Astronomy

, Volume 44, Issue 2, pp 181–208 | Cite as


Gravitational-wave laser INterferometry triangle
  • Shafa Aria
  • Rui Azevedo
  • Rick Burow
  • Fiachra Cahill
  • Lada Ducheckova
  • Alexa Holroyd
  • Victor Huarcaya
  • Emilia Järvelä
  • Martin Koßagk
  • Chris Moeckel
  • Ana Rodriguez
  • Fabien Royer
  • Richard Sypniewski
  • Edoardo Vittori
  • Madeleine Yttergren
Original Article


When the universe was roughly one billion years old, supermassive black holes (103-106 solar masses) already existed. The occurrence of supermassive black holes on such short time scales are poorly understood in terms of their physical or evolutionary processes. Our current understanding is limited by the lack of observational data due the limits of electromagnetic radiation. Gravitational waves as predicted by the theory of general relativity have provided us with the means to probe deeper into the history of the universe. During the ESA Alpach Summer School of 2015, a group of science and engineering students devised GLINT (Gravitational-wave Laser INterferometry Triangle), a space mission concept capable of measuring gravitational waves emitted by black holes that have formed at the early periods after the big bang. Morespecifically at redshifts of 15 < z < 30(∼ 0.1 − 0.3× 109 years after the big bang) in the frequency range 0.01 − 1 Hz. GLINT design strain sensitivity of \(5\times 10^{-24}\,1/\sqrt {\text {Hz}}\) will theoretically allow the study of early black holes formations as well as merging events and collapses. The laser interferometry, the technology used for measuring gravitational waves, monitors the separation of test masses in free-fall, where a change of separation indicates the passage of a gravitational wave. The test masses will be shielded from disturbing forces in a constellation of three geocentric orbiting satellites.


Gravitational waves Supermassive black holes Laser interferometry 



This work has been developed during the Alpbach Summer School 2015 and we would like to thank the European Space Agency, Austrian Research Promotion Program (FFG) and International Space Science Institute (ISSI) for their support. The work has been made possible through funds provided by the FFG. We would also like to thank all the summer school tutors, especially Christian Killow, Vitali Müller, Oliver Jennrich, Jose Sanjuán, and of course our tutor Martin Gehler for his support and help. Lastly, we would like to thank the anonymous reviewer for a great number of recommendations.


  1. 1.
    Aasi, J. et al.: Advanced LIGO. Class Quant Grav 32, 074,001 (2015)., arXiv:1411.4547 CrossRefGoogle Scholar
  2. 2.
    Acernese, F. et al.: Advanced virgo: a second-generation interferometric gravitational wave detector. Class Quant Grav 32(2), 024,001 (2015). arXiv:1408.3978 CrossRefGoogle Scholar
  3. 3.
    Adam, R. et al.: Planck 2015 results. I. Overview of products and scientific results. Astron Astrophys 594, A1 (2016). arXiv:1502.01582 CrossRefGoogle Scholar
  4. 4.
    Alexander, K.D., Wieringa, M.H., Berger, E., Saxton, R.D., Komossa, S.: Radio observations of the tidal disruption event XMMSL1 j0740 85. apj 837, 153 (2017)., arXiv:1610.03861 ADSCrossRefGoogle Scholar
  5. 5.
    Alves, M.E.S, Moraes, P.H.R.S, de Araujo, J.C.N, Malheiro, M.: Gravitational waves in f(r,t) and f(r,T ϕ) theories of gravity. Phys Rev D 94, 024,032 (2016). MathSciNetCrossRefGoogle Scholar
  6. 6.
    Amaro-Seoane, P., Aoudia, S., Babak, S., Binétruy, P, Berti, E., Bohé, A, Caprini, C., Colpi, M., Cornish, N.J., Danzmann, K., Dufaux, J.F., Gair, J., Jennrich, O., Jetzer, P., Klein, A., Lang, R.N., Lobo, A., Littenberg, T., McWilliams, S.T., Nelemans, G., Petiteau, A., Porter, E.K., Schutz, B.F., Sesana, A., Stebbins, R., Sumner, T., Vallisneri, M., Vitale, S., Volonteri, M., Ward, H.: Low-frequency gravitational-wave science with eLISA/NGO. Classical and Quantum Gravity 29(12), 124016 (2012). arXiv:1202.0839 ADSCrossRefGoogle Scholar
  7. 7.
    Amaro-Seoane, P., Aoudia, S., Babak, S., Binétruy, P, Berti, E., Bohe, A., Caprini, C., Colpi, M., Cornish, N.J., Danzmann, K., et al.: Low-frequency gravitational-wave science with elisa/ngo. Classical and Quantum Gravity 124(12), 016 (2012)Google Scholar
  8. 8.
    Ando, M., Kawamura, S., Seto, N., Sato, S., Nakamura, T., Tsubono, K., Takashima, T., Funaki, I., Numata, K., Kanda, N., et al.: Decigo and decigo pathfinder. Classical and Quantum Gravity 084(8), 010 (2010)Google Scholar
  9. 9.
    Armano, M., Benedetti, M., Bogenstahl, J., Bortoluzzi, D., Bosetti, P., Brandt, N., Cavalleri, A., Ciani, G., Cristofolini, I., Cruise, A., et al.: Lisa pathfinder: the experiment and the route to LISA. Classical and Quantum Gravity 26(9), 094,001 (2009)CrossRefGoogle Scholar
  10. 10.
    Armano, M., Audley, H., Auger, G., Baird, J., Binetruy, P., Born, M., Bortoluzzi, D., Brandt, N., Bursi, A., Caleno, M., et al.: Disentangling the magnetic force noise contribution in LISA Pathfinder. J. Phys. Conf. Ser. 610 (1), 012024 (2015)CrossRefGoogle Scholar
  11. 11.
    Armano, M., Audley, H., Auger, G., Baird, J., Bassan, M., Binetruy, P., Born, M., Bortoluzzi, D., Brandt, N., Caleno, M., Carbone, L., Cavalleri, A., Cesarini, A., Ciani, G., Congedo, G., Cruise, A., Danzmann, K., de Deus Silva, M., Rosa, R.D., Diaz-Aguiló, M, Fiore, L.D., Diepholz, I., Dixon, G., Dolesi, R., Dunbar, N., Ferraioli, L., Ferroni, V., Fichter, W., Fitzsimons, E., Flatscher, R., Freschi, M., Marín, AG, Marirrodriga, C.G., Gerndt, R., Gesa, L., Gibert, F., Giardini, D., Giusteri, R., Guzmán, F, Grado, A., Grimani, C., Grynagier, A., Grzymisch, J., Harrison, I., Heinzel, G., Hewitson, M., Hollington, D., Hoyland, D., Hueller, M., Inchauspé, H, Jennrich, O., Jetzer, P., Johann, U., Johlander, B., Karnesis, N., Kaune, B., Korsakova, N., Killow, C., Lobo, J., Lloro, I., Liu, L., López-Zaragoza, J, Maarschalkerweerd, R., Mance, D., Martín, V, Martin-Polo, L., Martino, J., Martin-Porqueras, F., Madden, S., Mateos, I., McNamara, P., Mendes, J., Mendes, L., Monsky, A., Nicolodi, D., Nofrarias, M., Paczkowski, S., Perreur-Lloyd, M., Petiteau, A., Pivato, P., Plagnol, E., Prat, P., Ragnit, U., Raïs, B, Ramos-Castro, J., Reiche, J., Robertson, D., Rozemeijer, H., Rivas, F., Russano, G., Sanjuán, J, Sarra, P., Schleicher, A., Shaul, D., Slutsky, J., Sopuerta, C., Stanga, R., Steier, F., Sumner, T., Texier, D., Thorpe, J.I., Trenkel, C., Tröbs, M, Tu, H., Vetrugno, D., Vitale, S., Wand, V., Wanner, G., Ward, H., Warren, C., Wass, P.J., Wealthy, D., Weber, W., Wissel, L., Wittchen, A., Zambotti, A., Zanoni, C., Ziegler, T., Zweifel, P.: Sub-femto-g free fall for space-based gravitational wave observatories: Lisa pathfinder results. Phys. Rev. Lett. 116(23) (2016).
  12. 12.
    Armano, M., Audley, H., Auger, G., Baird, J., Bassan, M., Binetruy, P., Born, M., Bortoluzzi, D., Brandt, N., Caleno, M., et al.: Sub-femto-g free fall for space-based gravitational wave observatories: Lisa pathfinder results. Phys. Rev. Lett. 116(23), 231,101 (2016)CrossRefGoogle Scholar
  13. 13.
    Armstrong, J., Estabrook, F., Tinto, M.: Time Delay Interferometry. (2002)
  14. 14.
    Audley, H., Babak, S., Baker, J., Barausse, E., Bender, P., Berti, E., Binetruy, P., Born, M., Bortoluzzi, D., Camp, J., et al.: Laser interferometer space antenna. arXiv:170200786 (2017)
  15. 15.
    Backer, D.C., Hellings, R.W.: Pulsar timing and general relativity. araa 24, 537–575 (1986). ADSCrossRefGoogle Scholar
  16. 16.
    Backer, D.C., Jaffe, A.H., Lommen, A.N.: Massive black holes, gravitational waves and pulsars. Coevolution of black holes and galaxies. p. 438 (2004)Google Scholar
  17. 17.
    Barke, S.: Inter-spacecraft frequency distribution for future gravitational waves observatories. PhD thesis (2015)Google Scholar
  18. 18.
    Barke, S., Wang, Y., Delgado, J.E., Tröbs, M, Heinzel, G., Danzmann, K.: Towards a gravitational wave observatory designer: sensitivity limits of spaceborne detectors. Classical and Quantum Gravity 32(9), 095,004 (2015)CrossRefGoogle Scholar
  19. 19.
    Begelman, M.C.: Accreting black holes. arXiv:1410.8132 (2014)
  20. 20.
    Bender, P.: LISA: laser interferometer space antenna for the detection and observation of gravitational waves: pre-phase a report. Max-Planck-Institut fur Quantenoptik (1998)Google Scholar
  21. 21.
    Bykov, I., Delgado, J.J.E., Marín, AFG, Heinzel, G., Danzmann, K.: LISA: Phasemeter development: advanced prototyping. J. Phys. Conf. Ser. 154, 012017 (2009). IOP PublishingCrossRefGoogle Scholar
  22. 22.
    Cardiff, E., Marr, G.: Propulsion options for the lisa mission. In: 40th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit, p. 3440 (2004)Google Scholar
  23. 23.
    Cavalleri, A., Ciani, G., Dolesi, R., Heptonstall, A., Hueller, M., Nicolodi, D., et al.: Increased brownian force noise from molecular impacts in a constrained volume. Phys. Rev. Lett. 103(14), 140601 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Cornish, N., Robson, T.: Galactic binary science with the new LISA design. arXiv:1703.09858 (2017)
  25. 25.
    Cutler, C.: Angular resolution of the lisa gravitational wave detector. Phys. Rev. D 57(12), 7089 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    Danzmann, K., et al.: LISA: Unveiling a hidden universe. assessment study report (2011)Google Scholar
  27. 27.
    DeBra, D.B.: Drag-free spacecraft as platforms for space missions and fundamental physics. Classical and Quantum Gravity 14(6), 1549 (1997) ADSCrossRefGoogle Scholar
  28. 28.
    Degnan, J.J.: Millimeter accuracy satellite laser ranging: a review. Contributions of space geodesy to geodynamics: technology (pp. 133–162) (1993)Google Scholar
  29. 29.
    Dimmelmeier, H., Font, J., Janka, H.T., Marek, A., Müller, E, Ott, C.: Max Planck Institute for Astrophysics Waveform Catalogue., [Accessed 30-August-2015] (2015)
  30. 30.
    Dooley, K.L.: Status of GEO 600. J Phys Conf Ser 610(1), 012,015 (2015)., arXiv:1411.6588 MathSciNetCrossRefGoogle Scholar
  31. 31.
    Eilers, A.C., Davies, F.B., Hennawi, J.F., Prochaska, J.X., Lukić, Z, Mazzucchelli, C.: Implications of z 6 quasar proximity zones for the epoch of reionization and quasar lifetimes. Astrophys. J. 840(1), 24 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    Erdmann, M., Sarri, G.: GAIA Mirrors ready to shine,
  33. 33.
    Flanagan, E.E., Hughes, S.A.: Measuring gravitational waves from binary black hole coalescences. i. signal to noise for inspiral, merger, and ringdown. Phys. Rev. D 57(8), 4535 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    Flanagan, E.E., Hughes, S.A.: Measuring gravitational waves from binary black hole coalescences. ii. the waves’ information and its extraction, with and without templates. Phys. Rev. D 57(8), 4566 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    Fryer, C.L., Holz, D.E., Hughes, S.A.: Gravitational wave emission from core collapse of massive stars. ApJ 565, 430–446 (2002). arXiv:astro-ph/0106113 ADSCrossRefGoogle Scholar
  36. 36.
    Funakki, I., Nakayama, Y.: Micro-thruster options for the japanese space gravitational wave observatory missions. In: IEPC, Presented at the 32nd International Electric Propulsion Conference, vol. 308 (2011)Google Scholar
  37. 37.
    Gair, J.R., Babak, S., Sesana, A., Amaro-Seoane, P., Barausse, E., Berry, C.P., Berti, E., Sopuerta, C.: Prospects for observing extreme-mass-ratio inspirals with LISA. arXiv:1704.00009 (2017)
  38. 38.
    Hannam, M., et al.: The samurai project: Verifying the consistency of black-hole-binary waveforms for gravitational-wave detection. Phys. Rev. D79, 084,025 (2009)., arXiv:0901.2437 Google Scholar
  39. 39.
    Hobbs, G., Edwards, R., Manchester, R.: Tempo2, a new pulsar timing package. 1. overview. Mon. Not. Roy. Astron. Soc. 369, 655–672 (2006). arXiv:astro-ph/0603381 ADSCrossRefGoogle Scholar
  40. 40.
    Hobbs, G., Archibald, A., Arzoumanian, Z., Backer, D., Bailes, M., Bhat, N.D.R, Burgay, M., Burke-Spolaor, S., Champion, D., Cognard, I., Coles, W., Cordes, J., Demorest, P., Desvignes, G., Ferdman, R.D., Finn, L., Freire, P., Gonzalez, M., Hessels, J., Hotan, A., Janssen, G., Jenet, F., Jessner, A., Jordan, C., Kaspi, V., Kramer, M., Kondratiev, V., Lazio, J., Lazaridis, K., Lee, K.J., Levin, Y., Lommen, A., Lorimer, D., Lynch, R., Lyne, A., Manchester, R., McLaughlin, M., Nice, D., Oslowski, S., Pilia, M., Possenti, A., Purver, M., Ransom, S., Reynolds, J., Sanidas, S., Sarkissian, J., Sesana, A., Shannon, R., Siemens, X., Stairs, I., Stappers, B., Stinebring, D., Theureau, G., van Haasteren, R., van Straten, W., Verbiest, J.P.W., Yardley, D.R.B., You, X.P.: The international pulsar timing array project: using pulsars as a gravitational wave detector. Classical and Quantum Gravity 27(8), 084013 (2010). arXiv:0911.5206 ADSCrossRefGoogle Scholar
  41. 41.
    Hulse, R.A., Taylor, H.J.: Discovery of a pulsar in a close binary system. In: Bulletin of the american astronomical society, bulletin of the american astronomical society, vol. 6, p. 453 (1974)Google Scholar
  42. 42.
    Iwasawa, K., Fabian, A.C., Mushotzky, R.F., Brandt, W.N., Awaki, H., Kunieda, H.: The broad iron k emission line in the seyfert 2 galaxy IRAS 18325-5926. mnras 279, 837–846 (1996). ADSCrossRefGoogle Scholar
  43. 43.
    Kokkotas, K.D.: Gravitational wave astronomy (with 2 figures). In: Röser, S (ed.) Reviews in modern astronomy, reviews in modern astronomy., arXiv:0809.1602, vol. 20, p. 140 (2008)
  44. 44.
    La Mura, G., Busetto, G., Ciroi, S., Rafanelli, P., Berton, M., Congiu, E., Cracco, V., Frezzato, M.: Relativistic plasmas in AGN jets - from synchrotron radiation to γ-ray emission. arXiv:1702.06779 (2017)
  45. 45.
    Larson, S.L., Hiscock, W.A., Hellings, R.W.: Sensitivity curves for spaceborne gravitational wave interferometers. Phys. Rev. D 62(6), 062,001 (2000)CrossRefGoogle Scholar
  46. 46.
    Larson, W.J., Wertz, J.R.: Space Mission Analysis and Design. Tech. Rep., Microcosm Inc., Torrance (1992)CrossRefGoogle Scholar
  47. 47.
    Laureijs, R., Amiaux, J., Arduini, S., Auguères, J, Brinchmann, J., Cole, R., Cropper, M., Dabin, C., Duvet, L., Ealet, A., et al.: Euclid Definition Study Report. arXiv:1110.3193 (2011)
  48. 48.
    L.I.G.O. Scientific Collaboration, V.I.R.G.O. Collaboration: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061,102 (2016). MathSciNetCrossRefGoogle Scholar
  49. 49.
    Liu, K., Verbiest, J.P.W, Kramer, M., Stappers, B.W., van Straten, W., Cordes, J.M.: Prospects for high-precision pulsar timing. mnras 417, 2916–2926 (2011)., arXiv:1107.3086 ADSCrossRefGoogle Scholar
  50. 50.
    Livas, J., Thorpe, J., Numata, K., Mitryk, S., Mueller, G., Wand, V.: Frequency-tunable pre-stabilized lasers for LISA via sideband locking. Classical and Quantum Gravity 26(9), 094,016 (2009)CrossRefGoogle Scholar
  51. 51.
    Lobo, A., Nofrarias, M., Ramos-Castro, J., Sanjuán, J: On-ground tests of the lisa pathfinder thermal diagnostics system. Classical and Quantum Gravity 23, 5177–5193 (2006). ADSCrossRefzbMATHGoogle Scholar
  52. 52.
    Loeb, A., Maoz, D.: Using atomic clocks to detect gravitational waves. arXiv:150100996 (2015)
  53. 53.
    Lorimer, D., Kramer, M.: Handbook of Pulsar Astronomy. Cambridge Observing Handbooks for Research Astronomers, Cambridge University Press, (2005)
  54. 54.
    Madau, P., Haardt, F., Dotti, M.: Super-critical growth of massive black holes from stellar-mass seeds. ApJS 784, L38 (2014). arXiv:1402.6995 ADSCrossRefGoogle Scholar
  55. 55.
    Manchester, R., Taylor, J.: Pulsars. A Series of books in astronomy and astrophysics, W.H. Freeman, (1977)
  56. 56.
    Marcuccio, S., Genovese, A.: Experimental performance of field emission microthrusters. J. Propuls. Power 14(5), 774–781 (1998). CrossRefGoogle Scholar
  57. 57.
    McClintock, J.E., Narayan, R., Davis, S.W., Gou, L., Kulkarni, A., Orosz, J.A., Penna, R.F., Remillard, R.A., Steiner, J.F.: Measuring the spins of accreting black holes. Class Quant. Grav. 28, 114,009 (2011). arXiv:1101.0811 MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Moore, C.J., Cole, R.H., Berry, C.P.: Gravitational-wave sensitivity curves. Classical and Quantum Gravity 32(1), 015,014 (2015)CrossRefGoogle Scholar
  59. 59.
    Mueller, G., McNamara, P., Thorpe, I., Camp, J.: Laser frequency stabilization for lisa (2005)Google Scholar
  60. 60.
    N.A.S.A. Astrophysics Science Division: Astrogravs waveform catalogue., [Accessed 30-August-2015] (2015)
  61. 61.
    Pacucci, F., Ferrara, A., Marassi, S.: Gravitational waves from direct collapse black holes formation. MNRAS 449, 1076–1083 (2015). arXiv:1502.04125 ADSCrossRefGoogle Scholar
  62. 62.
    Pain, I., Stobie, B., Wright, G.S., Paul, T., Cunningham, C.R.: Spire beam steering mirror: a cryogenic 2 axis mechanism for the herschel space observatory. In: Astronomical Telescopes and Instrumentation, International Society for Optics and Photonics, (pp. 619–627) (2003)Google Scholar
  63. 63.
    Paschotta, R.: Field Guide to Lasers, vol 12. SPIE press (2008)Google Scholar
  64. 64.
    Petrich, L.I., Shapiro, S.L., Wasserman, I.: Gravitational radiation from nonspherical infall into black holes. II - A catalog of ’exact’ waveforms. ApJS 58, 297–320 (1985). ADSCrossRefGoogle Scholar
  65. 65.
    Planck Collaboration, Ade, P.A.R, Aghanim, N., Armitage-Caplan, C., Arnaud, M., Ashdown, M., Atrio-Barandela, F., Aumont, J., Baccigalupi, C., Banday, A.J., et al.: Planck 2013 results. XVI. Cosmological Parameters 571, A16 (2014). arXiv:1303.5076 Google Scholar
  66. 66.
    Ricotti, M., Park, K.: Feedback-regulated accretion onto the first black holes. Am. Inst. Phys. Conf. Ser. 1480, 297–302 (2012). ADSGoogle Scholar
  67. 67.
    Sabin, C., Bruschi, D.E., Ahmadi, M., Fuentes, I.: Phonon creation by gravitational waves. New J. Phys. 16(8), 085,003 (2014) CrossRefGoogle Scholar
  68. 68.
    Saijo, M.: Dynamic black holes through gravitational collapse: Analysis of the multipole moment of the curvatures on the horizon. PhRvD 83 (12), 124031 (2011)., arXiv:1106.1922 ADSGoogle Scholar
  69. 69.
    Schilling, J.: Silverbird Astronautics. (2009)
  70. 70.
    Schneider, R., Ferrara, A., Ciardi, B., Ferrari, V., Matarrese, S.: Gravitational wave signals from the collapse of the first stars. MNRAS 317, 385–390 (2000)., arXiv:astro-ph/9909419 ADSCrossRefGoogle Scholar
  71. 71.
    Schott, A.: Zerodurr extremely low expansion glass ceramic (2016)Google Scholar
  72. 72.
    Seitenzahl, I.R., Herzog, M., Ruiter, A.J., Marquardt, K., Ohlmann, S.T., Röpke, FK: Neutrino and gravitational wave signal of a delayed-detonation model of type Ia supernovae. prd 92(12), 124013 (2015). arXiv:1511.02542 ADSCrossRefGoogle Scholar
  73. 73.
    Sereno, M., Sesana, A., Bleuler, A., Jetzer, P., Volonteri, M., Begelman, M.C.: Strong lensing of gravitational waves as seen by LISA. Phys Rev Lett 105, 251,101 (2010)., arXiv:1011.5238 CrossRefGoogle Scholar
  74. 74.
    Shaddock, D.A., Ware, B., Spero, R., Vallisneri, M.: Post-processed time-delay interferometry for LISA. (2008)
  75. 75.
    S.X.S. Collaboration: SXS Gravitational Waveform Database., [Accessed 30-August-2015] (2015)
  76. 76.
    Tajmar, M., Genovese, A., Steiger, W.: Indium field emission electric propulsion microthruster experimental characterization. J. Propuls. Power 20(2), 211–218 (2004)CrossRefGoogle Scholar
  77. 77.
    Tanaka, Y., Nandra, K., Fabian, A.C., Inoue, H., Otani, C., Dotani, T., Hayashida, K., Iwasawa, K., Kii, T., Kunieda, H., Makino, F., Matsuoka, M.: Gravitationally redshifted emission implying an accretion disk and massive black hole in the active galaxy mcg-6-30-15. Nature 375(6533), 659–661 (1995). ADSCrossRefGoogle Scholar
  78. 78.
    Tinto, M., Dhurandhar, S.V.: Time-delay interferometry. Living Reviews in Relativity 8(4), 12–16 (2005)Google Scholar
  79. 79.
    Tyson, J.A.: Large synoptic survey telescope: overview. In: Astronomical Telescopes and Instrumentation, International Society for Optics and Photonics, (pp. 10–20) (2002)Google Scholar
  80. 80.
    Will, C.M.: Testing scalar - tensor gravity with gravitational wave observations of inspiraling compact binaries. Phys Rev D 50, 6058–6067 (1994). arXiv:gr-qc/9406022 ADSCrossRefGoogle Scholar
  81. 81.
    Wu, X.B., Wang, F., Fan, X., Yi, W., Zuo, W., Bian, F., Jiang, L., McGreer, I.D., Wang, R., Yang, J., Yang, Q., Thompson, D., Beletsky, Y.: An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30. Nature 518, 512–515 (2015). arXiv:1502.07418 ADSCrossRefGoogle Scholar
  82. 82.
    Yagi, K.: Scientific Potential of Decigo Pathfinder and Testing GR with Space-Borne Gravitational Wave Interferometers. Int. J. Mod. Phys. D 22, 1341013 (2013)., arXiv:1302.2388 ADSCrossRefGoogle Scholar
  83. 83.
    Yang, L., Lee, C.C., Geng, C.Q.: Gravitational waves in viable f(R) models. J. Cosmol. Astropart. Phys. 8, 029 (2011). arXiv:1106.5582 ADSCrossRefGoogle Scholar
  84. 84.
    Yue, B., Ferrara, A., Salvaterra, R., Xu, Y., Chen, X.: The brief era of direct collapse black hole formation. MNRAS 440, 1263–1273 (2014). arXiv:1402.5675 ADSCrossRefGoogle Scholar
  85. 85.
    Zahnd, B., Zimmermann, M., Spörri, R.: Lisa-pathfinder cage and vent mechanism—development and qualification. In: Proceedings 15th European Space Mechanism and Tribology Symposium (ESMATS) (2013)Google Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Shafa Aria
    • 1
  • Rui Azevedo
    • 2
  • Rick Burow
    • 3
  • Fiachra Cahill
    • 4
  • Lada Ducheckova
    • 5
  • Alexa Holroyd
    • 6
  • Victor Huarcaya
    • 7
  • Emilia Järvelä
    • 8
  • Martin Koßagk
    • 9
  • Chris Moeckel
    • 10
  • Ana Rodriguez
    • 11
  • Fabien Royer
    • 12
  • Richard Sypniewski
    • 13
  • Edoardo Vittori
    • 14
  • Madeleine Yttergren
    • 15
  1. 1.University of OsloOsloNorway
  2. 2.Faculdade de Ciências da Universidade do PortoPortoPortugal
  3. 3.Universität BremenBremenGermany
  4. 4.Maynooth University, National University of IrelandMaynoothIreland
  5. 5.Czech Technical University of PraguePraha 1Czech Republic
  6. 6.University of BristolBristolUK
  7. 7.Centre for Quantum Technologies/National University of SingaporeSingaporeSingapore
  8. 8.Aalto University Metsähovi Radio ObservatoryKymäläFinland
  9. 9.Technical University Dresden / Institute of Aerospace EngineeringDresdenGermany
  10. 10.Delft University of TechnologyDelftNetherlands
  11. 11.University of Vienna / Institute for Quantum Optics and Quantum InformationViennaAustria
  12. 12.Institut Supérieur de l’Aéronautique et de l’EspaceToulouseFrance
  13. 13.FOTEC Forschungs- und Technologietransfer GmbHWiener NeustadtAustria
  14. 14.Imperial College LondonLondonUK
  15. 15.Chalmers University of TechnologyGothenburgSweden

Personalised recommendations