Advertisement

Experimental Astronomy

, Volume 44, Issue 1, pp 83–96 | Cite as

Constraining the pass-band of future space-based coronagraphs for observations of solar eruptions in the FeXIV 530.3 nm “green line”

  • Alessandro Bemporad
  • Paolo Pagano
  • Silvio Giordano
  • Silvano Fineschi
Original Article
  • 152 Downloads

Abstract

Observations of the solar corona in the FeXIV 530.3 nm “green line” have been very important in the past, and are planned for future coronagraphs on-board forthcoming space missions such as PROBA-3 and Aditya. For these instruments, a very important parameter to be optimized is the spectral width of the band-pass filter to be centred over the “green line”. Focusing on solar eruptions, motions occurring along the line of sight will Doppler shift the line profiles producing an emission that will partially fall out of the narrower pass-band, while broader pass-band will provide observations with reduced spectral purity. To address these issues, we performed numerical (MHD) simulation of CME emission in the “green line” and produced synthetic images assuming 4 different widths of the pass-band (Δλ = 20 Å, 10 Å, 5 Å, and 2 Å). It turns out that, as expected, during solar eruptions a significant fraction of “green line” emission will be lost using narrower filters; on the other hand these images will have a higher spectral purity and will contain emission coming from parcels of plasma expanding only along the plane of the sky. This will provide a better definition of single filamentary features and will help isolating single slices of plasma through the eruption, thus reducing the problem of superposition of different features along the line of sight and helping physical interpretation of limb events. For these reasons, we suggest to use narrower band passes (Δλ ≤ 2 Å) for the observations of solar eruptions with future coronagraphs.

Keywords

Instrumentation: Coronagraphs Methods: Numerical Sun: Corona Sun: Coronal mass ejections 

Notes

Acknowledgements

We acknowledge the use of the open source (gitorious.org/amrvac) MPI-AMRVAC software, relying on coding efforts from C. Xia, O. Porth, R. Keppens. This research has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 647214) and from the UK Science and Technology Facilities Council. The computational work for this paper was carried out on the joint STFC and SFC (SRIF) funded cluster at the University of St Andrews (Scotland, UK).

Supplementary material

10686_2017_9545_MOESM1_ESM.avi (2 mb)
ESM 1 (AVI 2040 kb)
10686_2017_9545_MOESM2_ESM.avi (1.6 mb)
ESM 2 (AVI 1639 kb)
10686_2017_9545_MOESM3_ESM.avi (2.4 mb)
ESM 3 (AVI 2410 kb)
10686_2017_9545_MOESM4_ESM.avi (3.2 mb)
ESM 4 (AVI 3295 kb)

References

  1. 1.
    Antonucci, E., Fineschi, S., Naletto, G., et al.: Multi Element Telescope for Imaging and Spectroscopy (METIS) coronagraph for the Solar Orbiter mission. Proc. of the SPIE, 8443, id. 844309 (2012)Google Scholar
  2. 2.
    Bagalá, L.G., Stenborg, G., Schwenn, R., Haerendel, G.: The eruptive events on September 30, 1998: 1. The jet. Journal of Geophysical Research. 106(A11), 25239–25248 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Bohlin, J.D., Frost, K.J., Burr, P.T., Guha, A.K., Withbroe, G.L.: Solar maximum mission. Sol Phys. 65(1), 5–14 (1980)ADSCrossRefGoogle Scholar
  4. 4.
    Brueckner, G.E., Howard, R.A., Koomen, M.J., et al.: The large angle spectroscopic coronagraph (LASCO). Sol. Phys. 162(1–2), 357–402 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    Cox, A. N.: Allen’s astrophysical quantities. Publisher: New York: AIP Press; Springer, 2000. Edited by Arthur N. Cox (2000)Google Scholar
  6. 6.
    Demastus, H.L., Wagner, W.J., Robinson, R.D.: Coronal disturbances. I: Fast Transient Events Observed in the Green Coronal Emission Line during the Last Solar Cycle. Solar Physics. 31(2), 449–459 (1973)Google Scholar
  7. 7.
    Domingo, V., Fleck, B., Poland, A.I.: SOHO: the solar and Heliospheric Observatory. Space Sci. Rev. 72(1–2), 81–84 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    Dunn, R.B.: Coronal Events Observed in 5303 Å. Physics of the Solar Corona, Proceedings of the NATO Advanced Study Institute. Reidel, Dordrecht (1971)Google Scholar
  9. 9.
    Fineschi, S., Antonucci, E., Naletto, G., et al.: METIS: a novel coronagraph design for the Solar Orbiter mission. Proc. of the SPIE, 8443, id. 84433H (2012)Google Scholar
  10. 10.
    Hori, K., Ichimoto, K., Sakurai, T., et al.: Flare-associated coronal disturbances observed with the Norikura green-line imaging System. I. A Coronal Mass Ejection Onset. The Astrophysical Journal. 618(2), 1001–1011 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Kaiser, M.L.: The STEREO mission: an overview. Adv. Space res. 36(8), 1483–1488 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Landi, E., Young, P. R., Dere, K. P., Del Zanna, G., Mason, H. E.: CHIANTI—An Atomic Database for Emission Lines. XIII. Soft X-Ray Improvements and Other Changes. Astrophys J, 763, 2, article id. 86, 9 (2013)Google Scholar
  13. 13.
    Mackay, D.H., van Ballegooijen, A.A.: Models of the large-scale corona. I. Formation, evolution, and liftoff of magnetic flux ropes. Astrophys J. 641(1), 577–589 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Mierla, M., Schwenn, R., Teriaca, L., Stenborg, G., Podlipnik, B.: Analysis of the Fe X and Fe XIV line width in the solar corona using LASCO-C1 spectral data. Astron Astrophys. 480(2), 509–514 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Müller, D., Marsden, R.G., St Cyr, O.C., Gilbert, H.R.: Solar orbiter. Exploring the sun-heliosphere connection. Sol Phys. 285(1–2), 25–70 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Orral, F.Q., Smith, H.J.: The passage of a flare spray through the solar emission corona. Astron. J. 66, 293 (1961)ADSCrossRefGoogle Scholar
  17. 17.
    Pagano, P., Mackay, D.H., Poedts, S.: Simulating AIA observations of a flux rope ejection. Astron Astrophys. 568(id.A120), 10 (2014)Google Scholar
  18. 18.
    Pagano, P., Bemporad, A., Mackay, D.H.: Future capabilities of CME polarimetric 3D reconstructions with the METIS instrument: A numerical test. Astron Astrophys. 582(id.A72), 12 (2015)Google Scholar
  19. 19.
    Plunkett, S.P., Brueckner, G.E., Dere, K.P., et al.: The relationship of green-line transients to white-light coronal mass ejections. Sol. Phys. 175(2), 699–718 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    Porth, O., Xia, C., Hendrix, T., Moschou, S. P., & Keppens, R.: MPI-AMRVAC for Solar and Astrophysics. The Astrophysical Journal Supplement Series, Volume 214, Issue 1, article id. 4, 26 pp. (2014)Google Scholar
  21. 21.
    Renotte, E., Alia, A., Bemporad, A., et al.: Design status of ASPIICS, an externally occulted coronagraph for PROBA-3. Proceedings of the SPIE, Volume 9604, id. 96040A 15 pp. (2015)Google Scholar
  22. 22.
    Romoli, M., Landini, F., Antonucci, E., et al.: METIS: the visible and UV coronagraph for Solar Orbiter. Proc. of the ICSO 2014 International Conference on Space Optics (2014)Google Scholar
  23. 23.
    Sankarasubramanian, K.: 31st ASI Meeting, ASI Conference Series, 2013, Vol. 9, pp 43–48 Edited by Pushpa Khare & C. H. Ishwara-Chandra (2013)Google Scholar
  24. 24.
    Schwenn, R., Inhester, B., Plunkett, S.P., et al.: First view of the extended green-line emission corona at solar activity minimum using the Lasco-C1 coronagraph on SOHO. Sol. Phys. 175(2), 667–684 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    Stenborg, G., Schwenn, R., Srivastava, N.: MICA Observations of Coronal Transients. Proceedings of the “8th SOHO Workshop”, ESA Special Publications 446. Edited by J.-C. Vial and B. Kaldeich-Schümann., p. 627 (1999)Google Scholar
  26. 26.
    Suzuki, I., Sakurai, T., Ichimoto, K.: Three-dimensional motion of plasmas associated with a coronal mass ejection observed with NOrikura green-line imaging System (NOGIS). Publications of the Astronomical Society of Japan. 58(1), 165–175 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Thompson, W.T., Davila, J.M., Fisher, R.R., et al.: COR1 inner coronagraph for STEREO-SECCHI. Innovative telescopes and instrumentation for solar Astrophysics. Edited by Stephen L. Keil, Sergey V. Avakyan. Pro SPIE. 4853, 1–11 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    Vásquez, A.M., van Ballegooijen, A.A., Raymond, J.C.: The effect of proton temperature anisotropy on the solar minimum corona and wind. Astrophys J. 598(2), 1361–1374 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.INAF-Turin Astrophysical ObservatoryPino TorineseItaly
  2. 2.School of Mathematics and StatisticsUniversity of St. AndrewsFife, ScotlandUK

Personalised recommendations