Advertisement

Experimental Astronomy

, Volume 44, Issue 1, pp 25–82 | Cite as

The e-ASTROGAM mission

Exploring the extreme Universe with gamma rays in the MeV – GeV range
  • The e-ASTROGAM Collaboration
  • A. De AngelisEmail author
  • V. TatischeffEmail author
  • M. Tavani
  • U. Oberlack
  • I. Grenier
  • L. Hanlon
  • R. Walter
  • A. Argan
  • P. von Ballmoos
  • A. Bulgarelli
  • I. Donnarumma
  • M. Hernanz
  • I. Kuvvetli
  • M. Pearce
  • A. Zdziarski
  • A. Aboudan
  • M. Ajello
  • G. Ambrosi
  • D. Bernard
  • E. Bernardini
  • V. Bonvicini
  • A. Brogna
  • M. Branchesi
  • C. Budtz-Jorgensen
  • A. Bykov
  • R. Campana
  • M. Cardillo
  • P. Coppi
  • D. De Martino
  • R. Diehl
  • M. Doro
  • V. Fioretti
  • S. Funk
  • G. Ghisellini
  • E. Grove
  • C. Hamadache
  • D. H. Hartmann
  • M. Hayashida
  • J. Isern
  • G. Kanbach
  • J. Kiener
  • J. Knödlseder
  • C. Labanti
  • P. Laurent
  • O. Limousin
  • F. Longo
  • K. Mannheim
  • M. Marisaldi
  • M. Martinez
  • M. N. Mazziotta
  • J. McEnery
  • S. Mereghetti
  • G. Minervini
  • A. Moiseev
  • A. Morselli
  • K. Nakazawa
  • P. Orleanski
  • J. M. Paredes
  • B. Patricelli
  • J. Peyré
  • G. Piano
  • M. Pohl
  • H. Ramarijaona
  • R. Rando
  • I. Reichardt
  • M. Roncadelli
  • R. Silva
  • F. Tavecchio
  • D. J. Thompson
  • R. Turolla
  • A. Ulyanov
  • A. Vacchi
  • X. Wu
  • A. Zoglauer
Original Article

Abstract

e-ASTROGAM (‘enhanced ASTROGAM’) is a breakthrough Observatory space mission, with a detector composed by a Silicon tracker, a calorimeter, and an anticoincidence system, dedicated to the study of the non-thermal Universe in the photon energy range from 0.3 MeV to 3 GeV – the lower energy limit can be pushed to energies as low as 150 keV, albeit with rapidly degrading angular resolution, for the tracker, and to 30 keV for calorimetric detection. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LIGO-Virgo-GEO600-KAGRA, SKA, ALMA, E-ELT, TMT, LSST, JWST, Athena, CTA, IceCube, KM3NeT, and the promise of eLISA.

Keywords

High-Energy Gamma-Ray Astronomy High-Energy Astrophysics Nuclear Astrophysics Compton and Pair Creation Telescope Gamma-Ray Bursts Active Galactic Nuclei Jets Outflows Multiwavelength Observations of the Universe Counterparts of gravitational waves Fermi Dark Matter Nucleosynthesis Early Universe Supernovae Cosmic Rays Cosmic Antimatter. 

Notes

Acknowledgements

The contribution by P. Couzin (TAS-F), G. Cluzet (TAS-F), X. Roser (TAS-F), A. Laurens (CNES), D. Delrieu (CNES), M.-F. DelCastillo (CNES), C. Contini (CGS), P. Lattanzi (CGS), B. Morelli (CGS), A. Spalla (CGS), is acknowledged. The research leading to these results has received funding from the European Union’s Horizon 2020 Programme under the AHEAD project (grant agreement n. 654215).

References

  1. 1.
    Aartsen, M.G., et al.: Science 342, 1242856 (2013)CrossRefGoogle Scholar
  2. 2.
    Abbott, B.P., et al.: Phys. Rev. Lett. 116, 061102 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    Abdo, A.A., et al.: Science 326, 1512 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Abdo, A.A., et al.: ApJ 709, 152 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Abdo, A.A., et al.: Science 331, 739 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Acero, F., et al.: ApJ 224, 8 (2016)CrossRefGoogle Scholar
  7. 7.
    Acero, F., et al.: ApJS 218, 23 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Ackermann, M., et al.: Science 334, 1103 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Ackermann, M., et al.: Science 339, 807 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Ackermann, M., et al.: Phys. Rev. D 89(042001) (2014)Google Scholar
  11. 11.
    Ackermann, M., et al.: Science 345, 554 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Ackermann, M., et al.: ApJ 793, 64 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Ackermann, M., et al.: ApJ 799, 1 (2015)CrossRefGoogle Scholar
  14. 14.
    Ackermann, M., et al.: Phys. Rev. Lett 115, 231301 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Ackermann, M., et al.: ApJ 824, 2 (2016)CrossRefGoogle Scholar
  16. 16.
    Ackermann, M., et al.: A&A 586, A71 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Adriani, O., et al.: Nucl. Instr. Methods A 511, 72 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Ahangarianabhari, M., et al.: Nucl. Inst. Methods Phys. Res. A 770, 155 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Ajello, M., et al.: ApJ 699, 603 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Ajello, M., et al.: ApJ 751, 108 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Albert, A., et al.: JCAP 1410, 023 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Alcaraz, J., Alpat, B., Ambrosi, G., et al.: Nucl. Instr. Methods A 593, 376 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Arik, E., et al.: J. Cosmology Astropart. Phys. 02, 008 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Bagliesi, M.G., et al.: Nucl. Phys. B Proc. Suppl. 215, 344 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Band, D., et al.: ApJ 413, 281 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    Baumgartner, W.H., et al.: ApJS 207, 19 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Benhabiles-Mezhoud, H., et al.: ApJ 763, 98 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Bergström, L.: Nucl. Phys. B325, 647 (1988)ADSGoogle Scholar
  29. 29.
    Berlin, T.H., Madansky, L.: Phys. Rev. 78, 623 (1950)ADSCrossRefGoogle Scholar
  30. 30.
    Bernard, D.: Nuclear Instr. and Methods in Phys Res. A 729, 765 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    Bildsten, L., Salpeter, E.E., Wasserman, I.: ApJ 408, 615 (1993)ADSCrossRefGoogle Scholar
  32. 32.
    Bird, A.J., et al.: ApJS 186, 1 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Bloser, P.F., et al.: Nucl. Instr. Methods A 812, 92 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    Boddy, K.K., Kumar, J.: AIP Conf. Proc. 1743(020009 (2016)Google Scholar
  35. 35.
    Boehm, C.T., Ensslin, A., Silk, J.: J.Phys.G 30, 279 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    Boehm, C.T., et al.: Phys. Rev. Lett. 92, 101301 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    Breitschwerdt, D., et al.: A&A 245, 79B (1991)ADSGoogle Scholar
  38. 38.
    Bringmann, T., et al.: arXiv:1610.04613 (2016)
  39. 39.
    Buehler, R., et al.: Measuring polarization of gamma-rays with Fermi, Presented at SciNeGHE Trieste (2010). http://scineghe2010.ts.infn.it/programmaScientifico.php
  40. 40.
    Bulgarelli, A., et al.: Proc. SPIE 8453, 845335 (2012)CrossRefGoogle Scholar
  41. 41.
    Campana, R., et al.: Exp. Astron. 37, 599 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    Carlson, E., Profumo, S.: Phys. Rev. D 90, 023015 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    Cheung, C.C., et al.: ApJ 826, 142 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    Churazov, E., et al.: Nature 512, 406 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    Churazov, E., et al.: ApJ 812, 62 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    Clayton, D.D., Hoyle, F.: ApJ 187, L101 (1974)ADSCrossRefGoogle Scholar
  47. 47.
    Crocker, R., Aharonian, F.: Phys. Rev. Lett. 106, 1102 (2011)CrossRefGoogle Scholar
  48. 48.
    De Angelis, A., Mansutti, O., Roncadelli, M.: Phys. Lett. B 659, 847 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    De Angelis, A., Pimenta, M.J.: Introduction to Particle and Astroparticle Physics–Questions to the Universe. Springer (2015)Google Scholar
  50. 50.
  51. 51.
    Diehl, R.: Rep. Progr. Phys., 76(2), 026301 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    Diehl, R., et al.: Science 345, 1162 (2014)ADSCrossRefGoogle Scholar
  53. 53.
    Diehl, R., et al.: A&A 574, A72 (2015)ADSCrossRefGoogle Scholar
  54. 54.
    Diehl, R., Timmes, F.X.: PASP 110, 748 (1998)CrossRefGoogle Scholar
  55. 55.
    Essig, R., et al.: JHEP 1, 193 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    Everett, J., et al.: ApJ 674, 258 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    Forot, M., et al.: ApJ 688, L29 (2008)ADSCrossRefGoogle Scholar
  58. 58.
    Fox, A., et al.: ApJ 799, 7 (2015)ADSCrossRefGoogle Scholar
  59. 59.
    Funk, S.: Ann. Rev. Nucl. Part. Sci. 65, 245 (2016)ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    Gal-Yam, A., et al.: Nature 462, 624 (2009)ADSCrossRefGoogle Scholar
  61. 61.
    Galanti, G., Roncadelli, M.: arXiv:1305.2114 (2013)
  62. 62.
    Gatti, E., Rehak, P.: Nucl. Instr. and Meth. A 225, 608 (1984). http://www.pnsensor.de/Welcome/Detectors/SDD/ CrossRefGoogle Scholar
  63. 63.
    Gevin, O., et al.: Nucl. Inst. Methods Phys. Res. A 695, 415 (2012)ADSCrossRefGoogle Scholar
  64. 64.
    Ghisellini, G., et al.: MNRAS 405, 387 (2010)ADSGoogle Scholar
  65. 65.
    Ghisellini, G., et al.: MNRAS 432, 2818 (2013)ADSCrossRefGoogle Scholar
  66. 66.
    Gómez, S., et al.: Proc. SPIE 9899, 98990G (2016). doi: 10.1117/12.2231095
  67. 67.
    Gomez-Gomar, J., Hernanz, M., Jose, J., Isern, J.: MNRAS 296, 913 (1998)ADSCrossRefGoogle Scholar
  68. 68.
    Götz, D., Laurent, P., Antier, S., et al.: MNRAS, 444, 2776 (2014)Google Scholar
  69. 69.
    Grefenstette, B.W., et al.: Nature 506, 339 (2014)ADSCrossRefGoogle Scholar
  70. 70.
    Grenier, I.A., Black, J.H., Strong, A.W.: ARA&A 53, 199 (2015)ADSCrossRefGoogle Scholar
  71. 71.
    Hernanz, M., Jose, J.: New Astron. Rev. 48, 35 (2004)ADSCrossRefGoogle Scholar
  72. 72.
    Hillebrandt, W., Kromer, M., Röpke, F., Ruiter, A.: Front. Phys. 8, 116 (2013)CrossRefGoogle Scholar
  73. 73.
    Hillebrandt, W., Niemeyer, J.C.: ARA&A 38, 191 (2000)ADSCrossRefGoogle Scholar
  74. 74.
    Indriolo, N., McCall, B.: ApJ 745, 91 (2012)ADSCrossRefGoogle Scholar
  75. 75.
    Isern, J., et al.: A&A 588, A67 (2016)ADSCrossRefGoogle Scholar
  76. 76.
    Jaeckel, J., Ringwald, A.: Ann. Rev. Nucl. Part. Sci. 60, 405 (2010)ADSCrossRefGoogle Scholar
  77. 77.
    Jogler, T., Funk, S.: ApJ 816, 100 (2016)ADSCrossRefGoogle Scholar
  78. 78.
    José, J., Hernanz, M.: J. Phys. G: Nucl. Phys. 34, R431 (2007)ADSCrossRefGoogle Scholar
  79. 79.
    Kadler, M., et al.: Nat. Phys. 12, 807 (2016)CrossRefGoogle Scholar
  80. 80.
    Kanbach, G., et al.: Nucl. Instr. Meth. Phys. Res. A 541, 310 (2005)ADSCrossRefGoogle Scholar
  81. 81.
    Kerzendorf, W., Sim, S.: MNRAS 440, 387 (2014)ADSCrossRefGoogle Scholar
  82. 82.
    Kirsch, M.G.F., et al.: XMM-Newton (cross)-calibration, arXiv:astro-ph/0407257 (2004)
  83. 83.
    Kissmann, R., et al.: Astropart. Phys. 70, 39 (2015)ADSCrossRefGoogle Scholar
  84. 84.
    Koljonen, K., et al.: MNRAS 406, 307 (2010)ADSCrossRefGoogle Scholar
  85. 85.
    Krause, M.G.H., et al.: A&A 578, A113 (2015)ADSCrossRefGoogle Scholar
  86. 86.
    Kretschmer, K., et al.: A&A 559, A99 (2013)ADSCrossRefGoogle Scholar
  87. 87.
    Labanti, C., et al.: Proc. SPIE 7021, 702116 (2008)CrossRefGoogle Scholar
  88. 88.
    Limongi, M., Chieffi, A.: ApJ 647, 483 (2006)ADSCrossRefGoogle Scholar
  89. 89.
    Limousin, O., et al.: IEEE Trans. Nucl. Sci. 52, 1595 (2005)Google Scholar
  90. 90.
    Marisaldi, M., et al.: IEEE Trans. Nucl. Sci. 52, 1842 (2005)ADSCrossRefGoogle Scholar
  91. 91.
    McClelland, D., et al.: LIGO Scientific Collaboration, Instrument Science White Paper, LIGO Document T1500290-v2 (2015)Google Scholar
  92. 92.
    McConnell, M.L.: accepted for publication in New Astronomy Review, arXiv:1611.06579 (2016)
  93. 93.
    Meyer, M., et al.: arXiv:1609.02350 (2016)
  94. 94.
    Moiseev, A.A., et al.: Astropart. Phys. 27, 339 (2007)ADSCrossRefGoogle Scholar
  95. 95.
    Moiseev, A.A., et al.: arXiv:1508.07349 (2007)
  96. 96.
    Nakar, E.: Phys. Rep. 442, 166 (2007)ADSCrossRefGoogle Scholar
  97. 97.
    Nomoto, K., Thielemann, F.-K., Yokoi, K.: ApJ 286, 644 (1984)ADSCrossRefGoogle Scholar
  98. 98.
    Odaka, H., et al.: Nucl. Instr. Methods A 695, 179 (2012)ADSCrossRefGoogle Scholar
  99. 99.
    Olive, K.A., et al.: Chin. Phys. C 38, 090001 (2014). and 2015 updateADSCrossRefGoogle Scholar
  100. 100.
    Olsen, H.: Phys. Rev. 131, 406 (1963)ADSCrossRefGoogle Scholar
  101. 101.
    Paciesas, W.S., et al.: ApJS 122, 465 (1999)ADSCrossRefGoogle Scholar
  102. 102.
    Paliya, V.S., et al.: ApJ 825, 74 (2016)ADSCrossRefGoogle Scholar
  103. 103.
    Patricelli, B., et al.: arXiv:1606.06124 (2016)
  104. 104.
    Perotti, F., et al.: Nucl. Instr. Meth. Phys. Res. A 556, 228 (2006)ADSCrossRefGoogle Scholar
  105. 105.
    Petrović, J., Pasquale, S.D., Zaharijaš, G.: J. Cosmology Astropart. Phys. 10, 052 (2014)ADSCrossRefGoogle Scholar
  106. 106.
    Phillips, M.M.: ApJ 413, L105 (1993)ADSCrossRefGoogle Scholar
  107. 107.
    Piano, G., et al.: A&A 545, A110 (2012)ADSCrossRefGoogle Scholar
  108. 108.
    Prada, F., et al.: Phys. Rev. Lett. 93, 241301 (2004)Google Scholar
  109. 109.
    Punturo, M., et al.: Classical and Quantum Gravity 27, 194002 (2010)Google Scholar
  110. 110.
    Recchia, S., et al.: MNRAS 462, L88 (2016)ADSCrossRefGoogle Scholar
  111. 111.
    Recchia, S., Blasi, P., Morlino, G.: MNRAS 462, 4227 (2016)ADSCrossRefGoogle Scholar
  112. 112.
    Ringwald, A., Rosenberg, L.J., Rybka, G.: Axions and other similar particles. In: Patrignani, C. et al. (eds.) (Particle Data Group), Chin. Phys. C, vol. 40, p 100001 (2016)Google Scholar
  113. 113.
    Rudaz, S., et al.: Phys. Rev. Lett. 56, 2128 (1986)ADSCrossRefGoogle Scholar
  114. 114.
    Ruiz-Lapuente, P., et al.: ApJ 820, 142 (2016)ADSCrossRefGoogle Scholar
  115. 115.
    Romero, G.E., Vieyro, F.L., Chaty, S.: A&A 562, L7 (2014)ADSCrossRefGoogle Scholar
  116. 116.
    Roques, J.P., et al.: A&A 411, L91 (2003)ADSCrossRefGoogle Scholar
  117. 117.
    Roques, J.P., et al.: ApJL 813, 22 (2015)ADSCrossRefGoogle Scholar
  118. 118.
    Schlickeiser, R., et al.: ApJ 787, 35 (2014)ADSCrossRefGoogle Scholar
  119. 119.
    Schönfelder, V., et al.: A&A 120 (1996)Google Scholar
  120. 120.
    Senno, N., et al.: Phys. Rev. D 93, 083003 (2016)ADSCrossRefGoogle Scholar
  121. 121.
    Siegert, T., et al.: Nature 531, 341 (2016)ADSCrossRefGoogle Scholar
  122. 122.
    Siegert, T., et al.: A&A 595, 25 (2016)CrossRefGoogle Scholar
  123. 123.
    Skilling, J., Strong, A.W.: A&A 53, 253 (1976)ADSGoogle Scholar
  124. 124.
    Skilling, J., Strong, A.W.: Nature 454, 1096 (1976)Google Scholar
  125. 125.
    Tagliaferri, G., et al.: ApJ 807, 167 (2015)ADSCrossRefGoogle Scholar
  126. 126.
    Takahashi, T., Uchiyama, Y., Stawarz, Ł.: Astropart. Phys. 43, 142 (2013)ADSCrossRefGoogle Scholar
  127. 127.
    Takami, H., Kyutoku, K., Ioka, K.: Phys. Rev. D 89, 063006 (2014)ADSCrossRefGoogle Scholar
  128. 128.
    Tanaka, T., et al.: ApJ 685, 988–1004 (2008)ADSCrossRefGoogle Scholar
  129. 129.
    Tatischeff, V., Hernanz, M.: ApJ 663, L101 (2007)ADSCrossRefGoogle Scholar
  130. 130.
    Tavani, M., et al.: Nature 462, 620 (2009)ADSCrossRefGoogle Scholar
  131. 131.
    Tavani, M., et al.: A&A 502, 995 (2009)ADSCrossRefGoogle Scholar
  132. 132.
    Tavani, M., et al.: Science 331, 736 (2011)ADSCrossRefGoogle Scholar
  133. 133.
    Tavani, M., et al.: Nucl. Phys. (Proc. Suppl.) 131, 243–244 (2013)Google Scholar
  134. 134.
    The, L.-S., Burrows, A.: ApJ 786, 141 (2014)ADSCrossRefGoogle Scholar
  135. 135.
    Tsai, Y.S.: Rev. Mod. Phys. 46, 815 (1974)ADSCrossRefGoogle Scholar
  136. 136.
    Tsygankov, S.S., Krivonos, R.A., Lutovinov, A.A., et al.: MNRAS 458, 3411 (2016)ADSCrossRefGoogle Scholar
  137. 137.
    Uchiyama, Y., et al.: ApJ 749, 35 (2012)ADSCrossRefGoogle Scholar
  138. 138.
    Veres, P., Meszaros, P.: ApJ 787, 168 (2014)ADSCrossRefGoogle Scholar
  139. 139.
    Volonteri, M., et al.: MNRAS 416, 216 (2011)ADSGoogle Scholar
  140. 140.
    von Ballmoos, P.: Hyperfine Interact. 228(1-3), 91 (2014)CrossRefGoogle Scholar
  141. 141.
    Walker, M.G., et al.: ApJ 704, 1274 (2009)ADSCrossRefGoogle Scholar
  142. 142.
    Wang, L.J., et al.: ApJ 823, 15 (2016)ADSCrossRefGoogle Scholar
  143. 143.
    Wang, X., Loeb A.: arXiv:1607.06472v1.pdf (2016)
  144. 144.
    Wick, G.C.: Phys. Rev. 81, 467 (1951)ADSCrossRefGoogle Scholar
  145. 145.
    Woosley, S.E., Kasen, D., Blinnikov, S., Sorokina, E: ApJ 662, 487 (2007)ADSCrossRefGoogle Scholar
  146. 146.
    Wouters, D., Brun, P.: Phys. Rev. D 86, 043005 (2012)ADSCrossRefGoogle Scholar
  147. 147.
    Yang, C.N.: Phys. Rev. 77, 722 (1950)ADSCrossRefGoogle Scholar
  148. 148.
    Zdziarski, A.A., Stawarz, Ł., Pjanka, P., Sikora, M.: MNRAS 440, 2238 (2014)ADSCrossRefGoogle Scholar
  149. 149.
    Zhang, H., Boettcher, M.: ApJ 774, 18 (2013)ADSCrossRefGoogle Scholar
  150. 150.
    Zoglauer, A., Andritschke, R., Schopper, F.: New A Rev. 50, 629 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • The e-ASTROGAM Collaboration
  • A. De Angelis
    • 1
    • 2
    • 3
    • 4
    Email author
  • V. Tatischeff
    • 5
    Email author
  • M. Tavani
    • 6
  • U. Oberlack
    • 7
  • I. Grenier
    • 8
  • L. Hanlon
    • 9
  • R. Walter
    • 10
  • A. Argan
    • 11
  • P. von Ballmoos
    • 12
  • A. Bulgarelli
    • 13
  • I. Donnarumma
    • 14
  • M. Hernanz
    • 15
  • I. Kuvvetli
    • 16
  • M. Pearce
    • 17
  • A. Zdziarski
    • 18
  • A. Aboudan
    • 19
  • M. Ajello
    • 20
  • G. Ambrosi
    • 21
  • D. Bernard
    • 22
  • E. Bernardini
    • 23
  • V. Bonvicini
    • 24
  • A. Brogna
    • 25
  • M. Branchesi
    • 26
  • C. Budtz-Jorgensen
    • 27
  • A. Bykov
    • 28
  • R. Campana
    • 29
  • M. Cardillo
    • 30
  • P. Coppi
    • 31
  • D. De Martino
    • 32
  • R. Diehl
    • 33
    • 34
  • M. Doro
    • 35
  • V. Fioretti
    • 36
  • S. Funk
    • 37
  • G. Ghisellini
    • 38
  • E. Grove
    • 39
  • C. Hamadache
    • 40
  • D. H. Hartmann
    • 41
  • M. Hayashida
    • 42
  • J. Isern
    • 43
  • G. Kanbach
    • 44
  • J. Kiener
    • 45
  • J. Knödlseder
    • 46
  • C. Labanti
    • 47
  • P. Laurent
    • 48
  • O. Limousin
    • 49
  • F. Longo
    • 50
  • K. Mannheim
    • 51
  • M. Marisaldi
    • 52
  • M. Martinez
    • 53
  • M. N. Mazziotta
    • 54
  • J. McEnery
    • 55
  • S. Mereghetti
    • 56
  • G. Minervini
    • 57
  • A. Moiseev
    • 58
  • A. Morselli
    • 59
  • K. Nakazawa
    • 60
  • P. Orleanski
    • 61
  • J. M. Paredes
    • 62
  • B. Patricelli
    • 63
  • J. Peyré
    • 64
  • G. Piano
    • 65
  • M. Pohl
    • 66
  • H. Ramarijaona
    • 67
  • R. Rando
    • 68
  • I. Reichardt
    • 69
  • M. Roncadelli
    • 70
  • R. Silva
    • 71
  • F. Tavecchio
    • 72
  • D. J. Thompson
    • 73
  • R. Turolla
    • 74
    • 75
  • A. Ulyanov
    • 76
  • A. Vacchi
    • 77
  • X. Wu
    • 78
  • A. Zoglauer
    • 79
  1. 1.INFN PadovaPadovaItaly
  2. 2.INAF PadovaPadovaItaly
  3. 3.Udine UniversityUdineItaly
  4. 4.LIP/IST LisboaLisboaPortugal
  5. 5.CSNSM, CNRS and University of Paris SudOrsayFrance
  6. 6.INAF/IAPSRomaItaly
  7. 7.Institute of Physics and PRISMA Excellence ClusterJohannes Gutenberg University MainzMainzGermany
  8. 8.AIM Paris-Saclay, CEA/IRFU, CNRSUniv Paris DiderotGif-sur-YvetteFrance
  9. 9.School of PhysicsUniversity College DublinDublinIreland
  10. 10.University of GenevaVersoixSwitzerland
  11. 11.INAF HeadquartersRomaItaly
  12. 12.IRAP ToulouseToulouse Cedex 4France
  13. 13.INAF/IASF BolognaBolognaItaly
  14. 14.INAF/IAPS (Now at Agenzia Spaziale Italiana, Roma, Italy)RomaItaly
  15. 15.ICE (CSIC-IEEC)Campus UAB, Carrer Can Magrans s/nBarcelonaSpain
  16. 16.DTU Space, National Space InstituteTechnical University of DenmarkKgs. LyngbyDenmark
  17. 17.NASA Goddard Space Flight CenterGreenbeltUSA
  18. 18.Nicolaus Copernicus Astronomical CenterPolish Academy of SciencesWarszawaPoland
  19. 19.Department of Physics and AstronomyUniversity of Padova and INAFPadovaItaly
  20. 20.Department of Physics and AstronomyClemson UniversityClemsonUSA
  21. 21.INFN PerugiaPerugiaItaly
  22. 22.LLR, Ecole Polytechnique, CNRS/IN2P3PalaiseauFrance
  23. 23.DESY, Platanen Allee 6ZeuthenGermany
  24. 24.INFN TriesteTriesteItaly
  25. 25.Institute of Physics and PRISMA Excellence ClusterJohannes Gutenberg University MainzMainzGermany
  26. 26.Università degli Studi di Urbino, DiSPeAUrbino and INFN FirenzeItaly
  27. 27.DTU Space, National Space InstituteTechnical University of DenmarkKgs. LyngbyDenmark
  28. 28.Ioffe InstituteSt.PetersburgRussia
  29. 29.INAF/IASF BolognaBolognaItaly
  30. 30.INAF/IAPSRomaItaly
  31. 31.Department of AstronomyYale UniversityNew HavenUSA
  32. 32.INAF - Osservatorio Astronomico di CapodimonteNapoliItaly
  33. 33.Max Planck Institut fuer extraterrestrische PhysikGarchingGermany
  34. 34.Excellence Cluster UniverseGarchingGermany
  35. 35.Department of Physics and AstronomyUniversity of Padova and INFNPadovaItaly
  36. 36.INAF/IASF BolognaBolognaItaly
  37. 37.Friedrich-Alexander-Universität Erlangen-NünbergErlangenGermany
  38. 38.INAF - Osservatorio di BreraMerateItaly
  39. 39.U.S. Naval Research LaboratoryWashingtonUSA
  40. 40.CSNSM, IN2P3-CNRS/Univ. Paris-SudUniversité Paris-SaclayOrsay CampusFrance
  41. 41.Department of Physics & AstronomyClemson UniversityClemsonUSA
  42. 42.Institute for Cosmic Ray ResearchThe University of TokyoChibaJapan
  43. 43.ICE (CSIC-IEEC)Campus UAB, Carrer Can Magrans s/nBarcelonaSpain
  44. 44.Max-Planck-Institut fur Extraterrestrische PhysikGarchingGermany
  45. 45.CSNSM, IN2P3-CNRS/Univ. Paris-Sud, Université Paris-SaclayOrsay CampusFrance
  46. 46.IRAP ToulouseToulouse Cedex 4France
  47. 47.INAF/IASF BolognaBolognaItaly
  48. 48.APC, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de ParisParis Cedex 13France
  49. 49.CEA/Saclay IRFU/Department of Astrophysics, Bat. 709Gif-Sur-YvetteFrance
  50. 50.University and INFN TriesteTriesteItaly
  51. 51.Universitaet WuerzburgCampus Hubland Nord, Lehrstuhl fuer AstronomieWuerzburgGermany
  52. 52.University of Bergen, Norway and INAF/IASF BolognaBolognaItaly
  53. 53.IFAE-BIST, Edifici Cn. Universitat Autonoma de BarcelonaBellaterraSpain
  54. 54.INFN Sezione di BariBariItaly
  55. 55.NASA Goddard Space Flight CenterGreenbeltUSA
  56. 56.INAF/IASFMilanoItaly
  57. 57.INAF/IAPSRomaItaly
  58. 58.CRESST/NASA/GSFC and University of MarylandCollege ParkUSA
  59. 59.INFN Roma Tor VergataRomaItaly
  60. 60.Department of PhysicsThe University of TokyoTokyoJapan
  61. 61.Space Research Center of Polish Academy of SciencesWarszawaPoland
  62. 62.Departament de Fìsica Quântica i AstrofìsicaICCUB, Universitat de BarcelonaBarcelonaSpain
  63. 63.Scuola Normale SuperioreINFN PisaItaly
  64. 64.CSNSM, IN2P3-CNRS/Univ. Paris-SudUniversite Paris-SaclayOrsay CampusFrance
  65. 65.INAF/IAPSRomaItaly
  66. 66.Institute of Physics and AstronomyUniversity of PotsdamPotsdamGermany
  67. 67.CSNSM, IN2P3-CNRS/Univ. Paris-Sud, Universitè Paris-SaclayOrsay CampusFrance
  68. 68.Department of Physics and Astronomy University of Padova and INFNPadovaItaly
  69. 69.Universitat Rovira i Virgili, Carrer de l’EscorxadorTarragonaSpain
  70. 70.INFN PaviaMilanoItaly
  71. 71.LIP, Departamento de FísicaUniversidade de CoimbraCoimbraPortugal
  72. 72.INAF - Osservatorio di BreraMerateItaly
  73. 73.NASA Goddard Space Flight CenterGreenbeltUSA
  74. 74.Department of Physics and AstronomyUniversity of PadovaPadovaItaly
  75. 75.University College LondonLondonUK
  76. 76.School of PhysicsUniversity College DublinDublin 4Ireland
  77. 77.University of Udine and INFN TriesteUdineItaly
  78. 78.DPNC, 24 Quai Ernest-AnsermetGenève 4Switzerland
  79. 79.University of California at Berkeley, Space Sciences LaboratoryBerkeleyUSA

Personalised recommendations