Advertisement

Experimental Astronomy

, Volume 43, Issue 1, pp 39–58 | Cite as

Performance results of HESP physical model

  • Anantha ChanumoluEmail author
  • Sivarani Thirupathi
  • Damien Jones
  • Sunetra Giridhar
  • Deon Grobler
  • Robert Jakobsson
Original Article

Abstract

As a continuation to the published work on model based calibration technique with HESP(Hanle Echelle Spectrograph) as a case study, in this paper we present the performance results of the technique. We also describe how the open parameters were chosen in the model for optimization, the glass data accuracy and handling the discrepancies. It is observed through simulations that the discrepancies in glass data can be identified but not quantifiable. So having an accurate glass data is important which is possible to obtain from the glass manufacturers. The model’s performance in various aspects is presented using the ThAr calibration frames from HESP during its pre-shipment tests. Accuracy of model predictions and its wave length calibration comparison with conventional empirical fitting, the behaviour of open parameters in optimization, model’s ability to track instrumental drifts in the spectrum and the double fibres performance were discussed. It is observed that the optimized model is able to predict to a high accuracy the drifts in the spectrum from environmental fluctuations. It is also observed that the pattern in the spectral drifts across the 2D spectrum which vary from image to image is predictable with the optimized model. We will also discuss the possible science cases where the model can contribute.

Keywords

Astronomical spectrographs High spectral resolution Calibrations Instrument modelling Physical model based calibrations Simultaneous reference observations Double fibre Wave length calibrations Instrumental drifts 

References

  1. 1.
    Chanumolu, A., Jones, D., Thirupathi, S.: Modelling high resolution Echelle spectrographs for calibrations: Hanle Echelle spectrograph, a case study. Experimental astronomy. Astrophysical Instrumentation and Methods 39, 9457 (2015). doi: 10.1007/s10686-015-9457-y Google Scholar
  2. 2.
    Bristow, P., Kerber, F., Rosa, M.R.: Advanced calibration techniques for astronomical spectrographs. Messenger 131, 2–6 (2008)ADSGoogle Scholar
  3. 3.
    Redman, S.L., Gillian, N., Sansonetti, C.J.: The spectrum of thorium from 250 nm to 5500 nm: Ritz wavelengths and optimized energy levels. Astrophys. J. Suppl. Ser. 211(1), 4 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Mahadevan S., Ramsey L., Wright J., Endl M., Redman S., Bender C., Roy A., Zonak S., Troupe N., Engel L., Sigurdsson S., Wolszczan A., Zhao B.: The habitable zone planet finder: a proposed high-resolution NIR spectrograph for the Hobby Eberly Telescope to discover low-mass exoplanets around M dwarfs. Proc. SPIE 7735, Ground-based and Airborne Instrumentation for Astronomy III, 77356X (July 20, 2010); doi: 10.1117/12.857551
  5. 5.
    D‟Odorico S., Avila G. and Molaro P.: “More light through the fibre: an upgrading of the link 3.6-m – CES”. The Messenger No. 58 ESO, Dec. 1989Google Scholar
  6. 6.
    Kaufer A., Andersen J. and Pasquini L.: “FEROS, the fiber-fed extended range optical spectrograph for the ESO 1.52-m telescope”. The messenger No. 89. Sep 1989Google Scholar
  7. 7.
    Raskin G., van Winckel H., Hensberge H., Jorissen A., Lehmann H., Waelkens C., Avila G., de Cuyper J-P, Degroote P., Dubosson R., Dumortier L., Fr’emat Y., Laux U., Michaud B., Morren J., Perez Padilla J., Pessemier W., Prins S., Smolders K., van Eck S., and Winkler J.: HERMES: A high-resolution fibre-fed spectrograph for the Mercator telescope. Astron. Astrophys., 526:A69, February 2011Google Scholar
  8. 8.
    Caffau, E., Faraggiana, R., Bonifacio, P., Ludwig, H.-G., Steffen, M.: Sulphur abundances from the SI near-infrared triplet at 1045 nm. Astron. Astrophys. 470, 699–708 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Pereira, C.B., Drake, N.A.: High-resolution spectroscopic observations of two chemically peculiar metal-poor stars: HD 10613 and BD+0402466. Astron. Astrophys. 496(3), 791–804 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Reddy, B.E., Lambert, D.L., Gonzalez, G., Yong, D.: Spectroscopic analysis of two carbon-rich post-asymptotic giant branch stars. Astrophys. J. 564, 482–494 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Bouchy, F., Pepe, F., Queloz, D.: Fundamental photon noise limit to radial velocity measurements. Astron. Astrophys. 374, 733–739 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    Seifahrt, A., Kaufl, H.U., Zangl, G., Bean, J.L., Richter, M.J., Siebenmorgen, R.: Synthesising, using, and correcting for telluric features in high-resolution astronomical spectra. A near-infrared case study using CRIRES. Astron. Astrophys. 524, A11 (2001)CrossRefGoogle Scholar
  13. 13.
    Huang, C., Zhao, G., Zhang, H.W., Chen, Y.Q.: Chemical abundances of 22 extrasolar planet host stars. Mon. Not. R. Astron. Soc. 363, 71–78 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Fox, A., Richter, P., Fechner, C.: VLT/UVES observations of peculiar α abundances in a sub-DLA at z~1.8 towards the quasar B1101-26. Astron. Astrophys. 572, A102 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Max Planck Institute for Solar System ResearchGöttingenGermany
  2. 2.Indian Institute of AstrophysicsBangaloreIndia
  3. 3.Prime OpticsEumundiAustralia
  4. 4.Kiwistar OpticsLower HuttNew Zealand

Personalised recommendations