Experimental Astronomy

, Volume 42, Issue 2, pp 165–178 | Cite as

Maximizing the probability of detecting an electromagnetic counterpart of gravitational-wave events

  • Michael CoughlinEmail author
  • Christopher Stubbs
Original Article


Compact binary coalescences are a promising source of gravitational waves for second-generation interferometric gravitational-wave detectors such as advanced LIGO and advanced Virgo. These are among the most promising sources for joint detection of electromagnetic (EM) and gravitational-wave (GW) emission. To maximize the science performed with these objects, it is essential to undertake a followup observing strategy that maximizes the likelihood of detecting the EM counterpart. We present a follow-up strategy that maximizes the counterpart detection probability, given a fixed investment of telescope time. We show how the prior assumption on the luminosity function of the electro-magnetic counterpart impacts the optimized followup strategy. Our results suggest that if the goal is to detect an EM counterpart from among a succession of GW triggers, the optimal strategy is to perform long integrations in the highest likelihood regions. For certain assumptions about source luminosity and mass distributions, we find that an optimal time investment that is proportional to the 2/3 power of the surface density of the GW location probability on the sky. In the future, this analysis framework will benefit significantly from the 3-dimensional localization probability.


Gravitational waves Telescopes 



MC is supported by National Science Foundation Graduate Research Fellowship Program, under NSF grant number DGE 1144152. CWS is grateful to the DOE Office of Science for their support under award DE-SC0007881. The authors would like to thank Professor Stephen Smartt and Professor John Tonry for comments on the manuscript.


  1. 1.
    Aasi, J., et al.: Advanced ligo. Class. Quant. Grav. 32(7), 074001 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    Abadie, J., Abbott, B.P., Abbott, R., Abernathy, M., Accadia, T., Acernese, F., Adams, C., Adhikari, R., Ajith, P., Allen, B., et al.: Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Class. Quant. Grav. 27(17), 173001 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    Abbott, et al.: Localization and broadband follow-up of the gravitational-wave transient gw150914. Submitted to ApJL, (2016a)
  4. 4.
    Abbott, et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016b). doi: 10.1103/PhysRevLett.116.061102 [
  5. 5.
    Acernese, F., et al.: Advanced virgo. Class. Quant. Grav. 32(2), 024001 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Antolini, E., Heyl, J.S.: Using the 2-mass photometric redshift survey to optimize ligo follow-up observations. Submitted to MNRAS (2016)Google Scholar
  7. 7.
    Barnes, J., Kasen, D.: Effect of a high opacity on the light curves of radioactively powered transients from compact object mergers. Astrophys. J. 775(1), 18 (2013). ADSCrossRefGoogle Scholar
  8. 8.
    Bartos, I., Crotts, A.P.S., Marka, S.: Galaxy survey on the fly: Prospects of rapid galaxy cataloging to aid the electromagnetic follow-up of gravitational wave observations. Astrophys. J. Lett. 801(1), L1 (2015a) 2041-8205/801/i=1/a=L1 ADSCrossRefGoogle Scholar
  9. 9.
    Bartos, I., Huard, T.L., Marka, S.: James Webb Space Telescope can detect kilonovae in gravitational wave follow-up search, arXiv:1502.07426 (2015b)
  10. 10.
    Berry, et al.: Parameter estimation for binary neutron-star coalescences with realistic noise during the advanced ligo era. Astrophys. J. 804(2), 114 (2015)
  11. 11.
    Bilicki, M., Jarrett, T.H., Peacock, J.A., Cluver, M.E., Steward, L.: Two micron all sky survey photometric redshift catalog: A comprehensive three-dimensional census of the whole sky. Astrophys. J. Suppl. Ser. 210(1), 9 (2014) ADSCrossRefGoogle Scholar
  12. 12.
    Cornish, N.J., Littenberg, T.B.: Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches. Class. Quant. Grav. 32(13), 135012 (2015) ADSCrossRefGoogle Scholar
  13. 13.
    Cowperthwaite, P.S., Berger, E.: A comprehensive study of detectability and contamination in deep rapid optical searches for gravitational wave counterparts. Astrophys J 814(1), 25 (2015) ADSCrossRefGoogle Scholar
  14. 14.
    Dark Energy Camera: DECam Exposure Time Calculator, (2015)
  15. 15.
    Essick, R., Vitale, S., Katsavounidis, E., Vedovato, G., Klimenko, S.: Localization of short duration gravitational-wave transients with the early advanced ligo and virgo detectors. Astrophys. J. 800(2), 81 (2015) ADSCrossRefGoogle Scholar
  16. 16.
    Fairhurst, S.: Triangulation of gravitational wave sources with a network of detectors. New J. Phys. 11(12), 123006 (2009). doi: 10.1088/1367-2630/11/12/123006 ADSCrossRefGoogle Scholar
  17. 17.
    Fairhurst, S.: Source localization with an advanced gravitational wave detector network. Class. Quantum Grav. 28(10), 105021 (2011). doi: 10.1088/0264-9381/28/10/105021 ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    Facilitating follow-up of LIGO-Virgo events using rapid sky localization. Hsin-yu chen and daniel e. holz. Submitted to ApJ (2015)Google Scholar
  19. 19.
    Grover, K., Fairhurst, S., Farr, B.F., Mandel, I., Rodriguez, C., Sidery, T., Vecchio, A.: Comparison of gravitational wave detector network sky localization approximations. Phys. Rev. D 89(4), 042004 (2014). doi: 10.1103/PhysRevD.89.042004 ADSCrossRefGoogle Scholar
  20. 20.
    Klimenko, S., Vedovato, G., Drago, M., Salemi, F., Tiwari, V., Prodi, G.A., Lazzaro, C., Ackley, K., Tiwari, S., Da Silva, C.F., Mitselmakher, G.: Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors. Phys. Rev. D 93, 042004 (2016). doi: 10.1103/PhysRevD.93.042004 ADSCrossRefGoogle Scholar
  21. 21.
    Kopparapu, R.K., Hanna, C., Kalogera, V., OShaughnessy, R., Gonzlez, G., Brady, P.R., Fairhurst, S.: Host galaxies catalog used in ligo searches for compact binary coalescence events. Astrophys. J. 675(2), 1459 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    Large Synoptic Survey Telescope. LSST Exposure Time Calculator (2015)
  23. 23.
    Majcher, A. et al.: Status of the pi of the sky telescopes in spain and chile. Proc. SPIE 9662, 966219–966219–9 (2015). doi: 10.1117/12.2205907
  24. 24.
    Metzger, B.D., Bauswein, A., Goriely, S., Kasen, D.: Neutron-powered precursors of kilonovae. arXiv:1409.0544 (September 2014)
  25. 25.
    Metzger, B.D., Berger, E.: What is the most promising electromagnetic counterpart of a neutron star binary merger? Astrophys. J. 746(1), 48 (2012) ADSCrossRefGoogle Scholar
  26. 26.
    Nakar, E.: Short-hard gamma-ray bursts. Phys. Rep. 442 (1–6), 166–236 (2007). doi: 10.1016/j.physrep.2007.02.005. The Hans Bethe Centennial Volume 1906-2006 S0370157307000476
  27. 27.
    Schlegel, D.J., Finkbeiner, D.P., Davis, M.: Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500(2), 525 (1998) ADSCrossRefGoogle Scholar
  28. 28.
    Sidery, T., Aylott, B., Christensen, N., Farr, B., Farr, W., Feroz, F., Gair, J., Grover, K., Graff, P., Hanna, C., Kalogera, V., Mandel, I., O’Shaughnessy, R., Pitkin, M., Price, L., Raymond, V., Röver, C., Singer, L., van der Sluys, M., Smith, R.J.E., Vecchio, A., Veitch, J., Vitale, S.: Reconstructing the sky location of gravitational-wave detected compact binary systems: Methodology for testing and comparison. Phys. Rev. D 89(8), 084060 (2014). doi: 10.1103/PhysRevD.89.084060 ADSCrossRefGoogle Scholar
  29. 29.
    Singer, L.P., Price, L.R., Farr, B., Urban, A.L., Pankow, C., Vitale, S., Veitch, J., Farr, W.M., Hanna, C., Cannon, K., Downes, T., Graff, P., Haster, C.-J., Mandel, I., Sidery, T., Vecchio, A.: The first two years of electromagnetic follow-up with advanced ligo and virgo. Astrophys. J. 795(2), 105 (2014) ADSCrossRefGoogle Scholar
  30. 30.
    Singer, L.P., Price, L.R., Speranza, A.: Optimizing optical follow-up of gravitational-wave candidates. arXiv:1204.4510 (2012)
  31. 31.
    Singer, et al.: Going the distance: Mapping host galaxies of ligo sources in three dimensions using local cosmography and targeted follow-up, Submitted to ApJL (2016)Google Scholar
  32. 32.
    Troja, E., King, A.R., O’Brien, P.T., Lyons, N., Cusumano, G.: Different progenitors of short hard gamma-ray bursts. Month. Not. R. Astronom. Soc. Lett. 385(1), L10–L14 (2008). doi: 10.1111/j.1745-3933.2007.00421.x ADSCrossRefGoogle Scholar
  33. 33.
    Wen, L., Chen, Y.: Geometrical expression for the angular resolution of a network of gravitational-wave detectors. Phys. Rev. D 81(8), 082001 (2010). doi: 10.1103/PhysRevD.81.082001 ADSCrossRefGoogle Scholar
  34. 34.
    White, D.J., Daw, EJ., Dhillon, V.S.: A list of galaxies for gravitational wave searches. Class. Quant. Grav. 28(8), 085016 (2011) ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of PhysicsHarvard UniversityCambridgeUSA
  2. 2.Department of AstronomyHarvard UniversityCambridgeUSA

Personalised recommendations