Experimental Astronomy

, Volume 42, Issue 1, pp 61–83 | Cite as

The optical depth sensor (ODS) for column dust opacity measurements and cloud detection on martian atmosphere

  • D. ToledoEmail author
  • P. Rannou
  • J-P. Pommereau
  • T. Foujols
Original Article


A lightweight and sophisticated optical depth sensor (ODS) able to measure alternatively scattered flux at zenith and the sum of the direct flux and the scattered flux in blue and red has been developed to work in martian environment. The principal goals of ODS are to perform measurements of the daily mean dust opacity and to retrieve the altitude and optical depth of high altitude clouds at twilight, crucial parameters in the understanding of martian meteorology. The retrieval procedure of dust opacity is based on the use of radiative transfer simulations reproducing observed changes in the solar flux during the day as a function of 4 free parameters: dust opacity in blue and red, and effective radius and effective width of dust size distribution. The detection of clouds is undertaken by looking at the time variation of the color index (CI), defined as the ratio between red and blue ODS channels, at twilight. The retrieval of altitude and optical depth of clouds is carried out using a radiative transfer model in spherical geometry to simulate the CI time variation at twilight. Here the different retrieval procedures to analyze ODS signals, as well as the results obtained in different sensitivity analysis are presented and discussed.


ODS ExoMars 2018 Radiative transfer Aerosol Clouds Mars 



This work was supported by the Centre National d'Études Spatiales (CNES) and the region of Champagne-Ardenne.


  1. 1.
    Clancy, R.T., Grossman, A.W., Wolff, M.J., James, P.B., Rudy, D.J., Billawala, Y.N., Sandor, B.J., Lee, S.W., Muhleman, D.O.: Water vapor saturation at low latitudes around aphelion: A key to Mars climate? Icarus 122, 36–62 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    Clancy, R.T., Wolff, M.J., Christensen, P.R.: Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude. J. Geophys. Res. (2003). doi: 10.1029/2003JE002058 Google Scholar
  3. 3.
    Colburn, D.S., Pollack, J.B., Haberle, R.M.: Diurnal variations in optical depth at Mars. Icarus (1989). doi: 10.1016/0019-1035(89)90114-0 Google Scholar
  4. 4.
    Gierasch, P.J., Goody, R.M.: The effect of dust on the temperature of the Martian atmosphere. J. Atmos. Sci. 29, 400–402 (1972)ADSCrossRefGoogle Scholar
  5. 5.
    Hansen, J.E., Travis, L.D.: Light scattering in planetary atmospheres. Space Sci. Rev. (1974). doi: 10.1007/BF00168069 Google Scholar
  6. 6.
    Korablev, O.I., Krasnopolsky, V.A., Rodin, A.V.: Vertical structure of Martian dust measured by solar infrared occultations from the Phobos spacecraft. Icarus 102, 76–87 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    Lemmon, M.T., Wolff, M.J., Smith, M.D., Clancy, R.T., Banfield, D., Landis, G.A., Ghosh, A., Smith, P.H., Spanovich, N., Whitney, B., Whelley, P., Greeley, R., Thompson, S., Bell, J.F., Squyres, S.W.: Atmospheric imaging results from the Mars exploration rovers: Spirit and Opportunity. Science 306, 1753–1756 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Lemmon, M.T., Wolff, M.J., Bell, J.F., Smith, M.D., Cantor, B.A., Smith, P.H.: Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission. Icarus 251, 96–111 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Madeleine, J.‐.B., Forget, F., Millour, E., Montabone, L., Wolff, M.J.: Revisiting the radiative impact of dust on Mars using the LMD Global Climate Model. J. Geophys. Res. (2011). doi: 10.1029/2011JE003855 Google Scholar
  10. 10.
    Maria, J.-L., Tran, T.T., Pommereau, J.-P., Rannou, P., Malique, C., Correia, J.J., Porteneuve, J.: Technical aspect of the optical depth sensor. Adv. Space. Res. (2006). doi: 10.1016/j.asr.2005.07.079 Google Scholar
  11. 11.
    Markiewicz, W.J., Sablotny, R.M., Keller, H.U., Thomas, N., Titov, D., Smith, P.H.: Optical properties of the Martian aerosols as derived from Imager for Mars Pathfinder midday sky brightness data. J. Geophys. Res. (1999). doi: 10.1029/1998JE900033 Google Scholar
  12. 12.
    Medvedev, A.S., Kuroda, T., Hartogh, P.: Influence of dust on the dynamics of the martian atmosphere above the first scale height. Aeolian Res. 3, 145–156 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Mishchenko, M.I., Travis, L.D., Kahn, R.A., West, R.A.: Modeling phase functions for dust-like tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids. J. Geophys. Res. (1997). doi: 10.1029/97JD01124 Google Scholar
  14. 14.
    Montmessin, F., Rannou, P., Cabane, M.: New insights into Martian dust distribution and water-ice cloud microphysics. J. Geophys. Res. (2002). doi: 10.1029/2001JE001520 Google Scholar
  15. 15.
    Montmessin, F., Quémerais, E., Bertaux, J.L., Korablev, O., Rannou, P., Lebonnois, S.: Stellar occultations at UV wavelengths by the SPICAM instrument: Retrieval and analysis of Martian haze profiles. J. Geophys. Res. (2006). doi: 10.1029/2005JE002662 Google Scholar
  16. 16.
    Montmessin, F., Gondet, B., Bibring, J.-P., Langevin, Y., Drossart, P., Forget, F., Fouchet, T.: Hyperspectral imaging of convective CO2 ice clouds in the equatorial mesosphere of Mars. J. Geophys. Res. (2007). doi: 10.1029/2007JE002944(2007) Google Scholar
  17. 17.
    Pollack, J.B., Colburn, D.S., Flasar, F.M., Kahn, R., Carlston, C.E., Pidek, D.: Properties and effects of dust particles suspended in the Martian atmosphere. J. Geophys. Res. 84, 2929–2945 (1979)ADSCrossRefGoogle Scholar
  18. 18.
    Pollack, J.B., Cuzzi, J.N.: Scattering by nonspherical particles of size comparable to wavelength - A new semi-empirical theory and its application to tropospheric aerosols. (1980). doi:10.1175/1520-0469(1980)037<0868:SBNPOS>2.0.CO;2.Google Scholar
  19. 19.
    Pollack, J.B., Ockert-Bell, M.E., Shepard, M.K.: Viking Lander image analysis of Martian atmospheric dust. J. Geophys. Res. (1995). doi: 10.1029/94JE02640 Google Scholar
  20. 20.
    Sarkissian, A., Pommereau, J.P., Goutail, F.: Identification of polar stratospheric clouds from the ground by visible spectrometry. Geophys. Res. Lett. (1991). doi: 10.1029/91GL00769 Google Scholar
  21. 21.
    Smith, M.D.: THEMIS observations of Mars aerosol optical depth from 2002–2008. Icarus (2009). doi: 10.1016/j.icarus.2009.03.027 Google Scholar
  22. 22.
    Smith, P.H., Lemmon, M.: Opacity of the Martian atmosphere measured by the Imager for Mars Pathfinder. J. Geophys. Res. (1999). doi: 10.1029/1998JE900017 Google Scholar
  23. 23.
    Smith, M.D., Wolff, M.J., Lemmon, M.T., Spanovich, N., Banfield, D., Budney, C.J., Clancy, R.T., Ghosh, A., Landis, G.A., Smith, P., Whitney, B., Christensen, P.R., Squyres, S.W.: First atmospheric science results from the mars exploration rovers mini-TES. Science 306(5702), 1750–1753 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    Smith, M.D., Wolff, M.J., Clancy, R.T., Kleinbohl, A., Murchie, S.L.: Vertical distribution of dust and water Ice aerosols from CRISM limb-geometry observations. J. Geophys. Res. 118(E2), 321–334 (2013)CrossRefGoogle Scholar
  25. 25.
    Stamnes, K., Tsay, S.C., Wiscombe, W., Jayaweera, K.: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. (1988). doi: 10.1364/AO.27.002502 Google Scholar
  26. 26.
    Toledo, D.: Preparation and Validation of the Cloud and Dust Opacity Sensor ODS for ExoMars 2018 Mission. PhD thesis in Astrophysics, Univ. Reims Champagne-Ardenne (2015).Google Scholar
  27. 27.
    Toledo, D., Rannou, P., Pommereau, J.-P., Sarkissian, A., Foujols, T.: Measurement of aerosol optical depth and sub-visual cloud detection using the optical depth sensor (ODS). Atmos. Meas. Tech. (2016). doi: 10.5194/amt-9-455-2016 Google Scholar
  28. 28.
    Tomasko, M.G., Doose, L.R., Lemmon, M., Smith, P.H., Wegryn, E.: Properties of dust in the Martian atmosphere from the Imager on Mars Pathfinder. J. Geophys. Res. (1999). doi: 10.1029/1998JE900016 Google Scholar
  29. 29.
    Trân, T.-T.: Optical Depth Sensor for Measurement of Dust and Clouds in the Atmosphere of Mars: Radiative Transfer Simulations and Validation on Earth. Thèse Dr. (Astrophysique). Univ. Versailles St-Quentin en Yvelines. (2005).Google Scholar
  30. 30.
    Tran, T.T., Pommereau, J.-P., Rannou, P., Maria, J.-L.: Scientific aspects of the optical depth sensor. Adv. Space. Res. (2005). doi: 10.1016/j.asr.2005.08.021 Google Scholar
  31. 31.
    Wolff, M.J., Smith, M.D., Clancy, R.T., Spanovich, N., Whitney, B.A., Lemmon, M.T., Bandfield, J.L., Banfield, D., Ghosh, A., Landis, G., Christensen, P.R., Bell, J.F., Squyres, S.W.: Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES. J. Geophys. Res. (2006). doi: 10.1029/2006JE002786 Google Scholar
  32. 32.
    Wolff, M.J., Smith, M.D., Clancy, R.T., Arvidson, R., Kahre, M., Seelos, F., Murchie, S., Savijärvi, H.: Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer. J. Geophys. Res. (2009). doi: 10.1029/2009JE003350 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • D. Toledo
    • 1
    Email author
  • P. Rannou
    • 1
  • J-P. Pommereau
    • 2
  • T. Foujols
    • 2
  1. 1.GSMA, UMR 7331, CNRSUniversité de Reims Champagne-ArdenneReimsFrance
  2. 2.LATMOSUniversité de Versailles-St-QuentinGuyancourtFrance

Personalised recommendations