Advertisement

Experimental Astronomy

, Volume 41, Issue 1–2, pp 17–41 | Cite as

The design and flight performance of the PoGOLite Pathfinder balloon-borne hard X-ray polarimeter

  • M. Chauvin
  • H.-G. Florén
  • M. Jackson
  • T. Kamae
  • T. Kawano
  • M. Kiss
  • M. Kole
  • V. Mikhalev
  • E. Moretti
  • G. Olofsson
  • S. Rydström
  • H. Takahashi
  • J. Lind
  • J.-E. Strömberg
  • O. Welin
  • A. Iyudin
  • D. Shifrin
  • M. PearceEmail author
Original Article

Abstract

In the 50 years since the advent of X-ray astronomy there have been many scientific advances due to the development of new experimental techniques for detecting and characterising X-rays. Observations of X-ray polarisation have, however, not undergone a similar development. This is a shortcoming since a plethora of open questions related to the nature of X-ray sources could be resolved through measurements of the linear polarisation of emitted X-rays. The PoGOLite Pathfinder is a balloon-borne hard X-ray polarimeter operating in the 25-240 keV energy band from a stabilised observation platform. Polarisation is determined using coincident energy deposits in a segmented array of plastic scintillators surrounded by a BGO anticoincidence system and a polyethylene neutron shield. The PoGOLite Pathfinder was launched from the SSC Esrange Space Centre in July 2013. A near-circumpolar flight was achieved with a duration of approximately two weeks. The flight performance of the Pathfinder design is discussed for the three Crab observations conducted. The signal-to-background ratio for the observations is shown to be 0.25 ±0.03 and the Minimum Detectable Polarisation (99 % C.L.) is (28.4 ±2.2) %. A strategy for the continuation of the PoGOLite programme is outlined based on experience gained during the 2013 maiden flight.

Keywords

X-ray polarimetry Scientific ballooning Crab 

Notes

Acknowledgments

The PoGOLite Collaboration acknowledges funding received from The Swedish National Space Board, The Knut and Alice Wallenberg Foundation, The Swedish Research Council and the Göran Gustafsson Foundation. The SSC Esrange Space Centre is thanked for their considerable support and expertise during the launch build-up and flight campaign of the PoGOLite Pathfinder. The government of the Russian Federation is thanked for permitting a circumpolar flight. Tim Thurston designed the PoGOLite mechanics which was primarily manufactured by the workshop at AlbaNova University Centre. Gilles Bogaert provided VM2000 for the scintillator array. All past members of the PoGOLite Collaboration not listed as authors on this paper are thanked for their important contributions to the development of the project.

References

  1. 1.
    Lei, F., et al.: Space Sci. Rev. 82, 309 (1997)CrossRefADSGoogle Scholar
  2. 2.
    Kamae, T., et al.: Astropart. Phys. 30, 72 (2008)CrossRefADSGoogle Scholar
  3. 3.
    Axelsson, M., et al.: Astropart. Phys. 28, 327 (2007)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Weisskopf, M.C., et al.: Astrophys. J. 208, 125 (1976)CrossRefADSGoogle Scholar
  5. 5.
    Novick, R., et al.: Astrophys. J. 174, 1 (1972)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Weisskopf, M.C., et al.: Astrophys. J. 220, 117 (1978)CrossRefADSGoogle Scholar
  7. 7.
    Forot, M., et al.: Astrophys. J. 688, 29 (2008)CrossRefADSGoogle Scholar
  8. 8.
    Dean, A.J., et al.: Science 321, 1183 (2008)CrossRefADSGoogle Scholar
  9. 9.
    Chauvin, M., et al.: Astrophys. J. 769, 137 (2013)CrossRefADSGoogle Scholar
  10. 10.
    Chauvin, M., et al.: Astropart. Phys. 72, 1 (2016)CrossRefADSGoogle Scholar
  11. 11.
    Kislat, F., et al.: Astropart. Phys. 68, 45 (2015)CrossRefADSGoogle Scholar
  12. 12.
    Mizuno, T., et al.: Nucl. Instrum. Methods A 540, 158 (2005)CrossRefADSGoogle Scholar
  13. 13.
    Kanai, Y., et al.: Nucl. Instrum. Methods A 570, 61 (2007)CrossRefADSGoogle Scholar
  14. 14.
    Kiss, M.: Pre-flight development of the PoGOLite Pathfinder. KTH Royal Institute of Technology Doctoral Thesis (2011). ISBN: 978-91-7415-896-0Google Scholar
  15. 15.
    Mizuno, T., et al.: Nucl. Instrum. Methods A 600, 609 (2009)CrossRefADSGoogle Scholar
  16. 16.
    Mallol, P.: A cooling system for PoGOLite – a balloon-borne soft gamma-ray polarimeter. KTH Royal Institute of Technology Master’s Thesis (2009)Google Scholar
  17. 17.
    Kole, M.: Background Studies for the Balloon-Borne Hard X-ray Polarimeter PoGOLite. KTH Royal Institute of Technology Doctoral Thesis (2014). ISBN: 978-91-7595-337-3Google Scholar
  18. 18.
    Takahashi, H., et al.: IEEE Nucl. Sci. Symp. Conf. Rec., 32 (2011)Google Scholar
  19. 19.
    Kole, M., et al.: Nucl. Instrum. Methods A 770, 68 (2015)CrossRefADSGoogle Scholar
  20. 20.
    ESA SpaceWire home page, http://www.spacewire.esa.int
  21. 21.
    Jönsson, L.-O.: Proceedings of the 19th ESA Symposium on European Rocket and Balloon Programmes and Related Research (2009)Google Scholar
  22. 22.
    Jackson, M.S.: J. Instrum. 8, P04008 (2013)CrossRefGoogle Scholar
  23. 23.
    Marini Bettolo, C.: Performance Studies and Star Tracking for PoGOLite. KTH Royal Institute of Technology Doctoral Thesis (2010). ISBN: 978-91-7415-641-6Google Scholar
  24. 24.
    Strömberg, J.-E.: Proceedings of the 19th ESA Symposium on European Rocket and Balloon Programmes and Related Research (2009)Google Scholar
  25. 25.
    Rex, M., et al.: Proc. SPIE–Int. Soc. Opt. Eng. 6269, 6269H-1 (2006)Google Scholar
  26. 26.
    Dietz, K.L., et al.: Opt. Eng. 41(10), 2641 (2002)CrossRefADSGoogle Scholar
  27. 27.
    Lindblom Optic Design And Consulting, Varmfrontsgatan 18, 128 34 Skarpnäck. SwedenGoogle Scholar
  28. 28.
    Private Communication, SSC Esrange Space Centre (2013)Google Scholar
  29. 29.
    Weisskopf, M.C., et al.: Proc. SPIE–Int. Soc. Opt. Eng. 7732, 77320E (2010)Google Scholar
  30. 30.
    De Jager, O.C., et al.: Astron. Astrophys. 221, 180 (1989)ADSGoogle Scholar
  31. 31.
    De Jager, O.C., Büsching, I.: Astron. Astrophys. 517, L9 (2010)CrossRefADSGoogle Scholar
  32. 32.
    Lyne, A.G., et al.: Mon. Not. Royal Astron. Soc. 265, 1003 (1993). Data available at http://www.jb.man.ac.uk/%7Epulsar/crab.html
  33. 33.
    Takahashi, T., et al.: Publ. Astron. Soc. Jpn. 59, S35 (2007)CrossRefADSGoogle Scholar
  34. 34.
    Suzaku Public Data (dataset 104001070). Data available at http://www.darts.isas.jaxa.jp/astro/suzaku/public_seq.html
  35. 35.
    Kole, M., et al.: Astropart. Phys. 62, 230 (2015)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • M. Chauvin
    • 1
    • 2
  • H.-G. Florén
    • 3
  • M. Jackson
    • 1
    • 2
  • T. Kamae
    • 4
  • T. Kawano
    • 5
  • M. Kiss
    • 1
    • 2
  • M. Kole
    • 1
    • 2
    • 9
  • V. Mikhalev
    • 1
    • 2
  • E. Moretti
    • 1
    • 2
    • 10
  • G. Olofsson
    • 3
  • S. Rydström
    • 1
    • 2
  • H. Takahashi
    • 5
  • J. Lind
    • 6
  • J.-E. Strömberg
    • 6
  • O. Welin
    • 6
  • A. Iyudin
    • 7
  • D. Shifrin
    • 8
  • M. Pearce
    • 1
    • 2
    Email author
  1. 1.Department of PhysicsKTH Royal Institute of TechnologyStockholmSweden
  2. 2.The Oskar Klein Centre for Cosmoparticle PhysicsAlbaNova University CentreStockholmSweden
  3. 3.Department of AstronomyStockholm University, AlbaNova University CentreStockholmSweden
  4. 4.Department of PhysicsUniversity of TokyoTokyoJapan
  5. 5.Department of Physical ScienceHiroshima UniversityHiroshimaJapan
  6. 6.DST ControlLinköpingSweden
  7. 7.Skobeltsyn Institute of Nuclear PhysicsMoscow State University by M. V. LomonosovMoscowRussia
  8. 8.Russian Federal Service for Hydrometeorology and Environmental Monitoring, Central Aerological ObservatoryMoscowRussia
  9. 9.Geneva UniversityGenevaSwitzerland
  10. 10.Max-Planck-Institut für PhysikMünchenGermany

Personalised recommendations