Advertisement

Experimental Astronomy

, Volume 39, Issue 2, pp 387–404 | Cite as

Real-time earthquake warning for astronomical observatories

  • Michael CoughlinEmail author
  • Christopher Stubbs
  • Sergio Barrientos
  • Chuck Claver
  • Jan Harms
  • R. Chris Smith
  • Michael Warner
Original Article

Abstract

Early earthquake warning is a rapidly developing capability that has significant ramifications for many fields, including astronomical observatories. In this work, we describe the susceptibility of astronomical facilities to seismic events, including large telescopes as well as second-generation ground-based gravitational-wave interferometers. We describe the potential warning times for observatories from current seismic networks and propose locations for future seismometers to maximize warning times.

Keywords

Astronomical observatories Earthquakes Gravitational-wave detectors 

Notes

Acknowledgments

The authors would like to thank USGS scientists Paul Earle and Michelle Guy for helpful discussions related to Early Earthquake Warning and the PDL client. MC was supported by the National Science Foundation Graduate Research Fellowship Program, under NSF grant number DGE 1144152. CWS is grateful to the DOE Office of Science for their support under award DE-SC0007881.

References

  1. 1.
    Allen, R.M.: Transforming earthquake detection Science 335, 297–298 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    Kuyuk, H.S., Allen, R.M.: A global approach to provide magnitude estimates for earthquake early warning. Geophys. Res. Lett., 40 (2013)Google Scholar
  3. 3.
    Kuyuk, H.S., Allen, RM.: Optimal seismic network density for earthquake early warn- ing: A case study from california. Seismol. Res. Lett. 84(6), 946–954 (2013)CrossRefGoogle Scholar
  4. 4.
    Kuyuk, H.S., et al.: Designing a network-based earthquake early warning system for california: Elarms-2. Bull. Seismol. Soc. Am. 104(1) (2014)Google Scholar
  5. 5.
    Cochran, E., Lawrence, J., Christensen, C., Chung, A.: A novel strong-motion seismic network for community participation in earthquake monitoring. IEEE Inst. Meas. 12(6), 8–15 (2009)CrossRefGoogle Scholar
  6. 6.
    Cochran, E., Lawrence, J., Christensen, C., Jakka, R.: The quake-catcher network: Citizen science expanding seismic horizons. Seismol. Res. Lett. 80, 26–30 (2009)CrossRefGoogle Scholar
  7. 7.
    Böse, M., Allen, R., Brown, H., Gua, G., Fischer, M., Hauksson, E., Heaten, T., Hellweg, M., Liukis, M., Neuhauser, D., Maechling, P., Solanki, K., Vinci, M., Henson, I., Khainovski, O., Kuyuk, S., Carpio, M., Meier, M.-A., Jordan, T.: Cisn shakealert: An earthquake early warning demonstration system for california. In: Wenzel, F., Zschau, J. (eds.) Early Warning for Geological Disasters, Advanced Technologies in Earth Sciences, pp 49–69. Springer Berlin Heidelberg (2014)Google Scholar
  8. 8.
    Hoshiba, M., Kamigaichi, O., Saito, M., Tsukada, S., Hamada, N.: Earthquake early warning starts nationwide in japan. Eos, Trans. Am. Geophys. Union 89(8), 73–74 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Kan, F., Antebi, J.: Seismic hazard: analysis and design of large ground-based telescopes. Proceedings SPIE, 7012:70122E–70122E–10 (2008)Google Scholar
  10. 10.
    Douglas, R.: Neill. Seismic analysis of the LSST telescope. Proceedings SPIE, 8444:84440T–84440T–15 (2012)Google Scholar
  11. 11.
    Neill, D.R., Warner, M., Sebag, J.: Seismic design accelerations for the LSST telescope. Proceedings SPIE, 8444:84440R–84440R–15 (2012)Google Scholar
  12. 12.
    Kea, M.: Observatories Earthquake Workshop. Keauhou Beach Resort, Kailua-Kona, Hawaii (2007)Google Scholar
  13. 13.
    Bürgmann, R.: Earth science: Warning signs of the iquique earthquake. Nature 512, 258–259 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Gavin H., et al.: Continuing megathrust earthquake potential in chile after the 2014 iquique earthquake. Nature 512, 295—298 (2014)Google Scholar
  15. 15.
    Schurr, B., et al.: Gradual unlocking of plate boundary controlled initiation of the 2014 iquique earthquake. Nature 512, 299—302 (2014)CrossRefGoogle Scholar
  16. 16.
    Harry G.: For the LIGO Scientific Collaboration. Advanced LIGO: the next generation of gravitational wave detectors. Class. Quantum Grav. 27, 084006 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Acernese, F., et al.: Advanced Virgo Preliminary Design. Virgo Internal report: VIR-0089A-08 (2008)Google Scholar
  18. 18.
    Grote, H. for the LIGO Scientific Collaboration: The GEO 600 status. Class. Quantum Grav. 27, 084003 (2010)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Christensen, N. for the LIGO Scientific Collaboration and the Virgo Collaboration: Ligo s6 detector characterization studies. Class. Quantum Grav. 27(19), 194010 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Macleod, D.M., Fairhurst, S., Hughey, B., Lundgren, A.P., Pekowsky, L., Rollins, J., Smith, J.R.: Reducing the effect of seismic noise in ligo searches by targeted veto generation. Class. Quantum Grav. 29(5), 055006 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Abbott, R., Adhikari, R., et al.: Seismic isolation for advanced ligo. Class. Quantum Grav. 19(7), 1591 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    Stochino, A., Abbot, B., Aso, Y., Barton, M., Bertolini, A., Boschi, V., Coyne, D., DeSalvo, R., Galli, C., Huang, Y., Ivanov, A., Marka, S., Ottaway, D., Sannibale, V., Vanni, C., Yamamoto, H., Yoshida, S.: The seismic attenuation system (sas) for the advanced {LIGO} gravitational wave interferometric detectors. Nucl. Instrum. Methods Phys. Res. A: Accelerators, Spectrometers, Detect. Assoc. Equip. 598(3), 737–753 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Abadie, J., et al.: Search for gravitational waves from low mass compact binary coalescence in ligo’s sixth science run and virgo’s science runs 2 and 3. Phys. Rev. D 85, 082002 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Montagner, J., Roult, G.: Normal modes of the earth. J. Phys.: Conf. Ser. 118(1), 012004 (2008)ADSGoogle Scholar
  25. 25.
    Vernon, F.L., Harvey, D., Eakins, J.A., Busby, R.W., Astiz, L., Newman, R.L., Reyes, J.: Calibration Response of the NSF Earthscope USArray Transportable Array. calibration of USArray, (2009)Google Scholar
  26. 26.
    Snoke, J.A.: Traveltime tables for iasp91 and ak135. Seismol. Res. Lett. 80(2), 260–262 (2009)CrossRefGoogle Scholar
  27. 27.
    Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., Obspy, J.W.: A python toolbox for seismology. Seismol. Res. Lett. 81(3), 530–533 (2010)CrossRefGoogle Scholar
  28. 28.
    Allin Cornell, C.: Engineering seismic risk analysis. Bull. Seismol. Soc. Am. 58(5), 1583–1606 (1968)Google Scholar
  29. 29.
    Baker, J.W.: An introduction to probabilistic seismic hazard analysis. Report US Nucl. Regul. Comm. page Version 1, 3 (2008)Google Scholar
  30. 30.
    Ursin, B., Toverud, T.: Comparison of seismic dispersion and attenuation models. Stud. Geophys. Geodaet. 46(2), 293–320 (2002)CrossRefGoogle Scholar
  31. 31.
    Gutenberg, R., Richter, C.F.: Frequency of earthquakes in California. Bull. Seismol. Soc. Am. 34, 185–188 (1944)Google Scholar
  32. 32.
    Medina, M.A.: Análisis comparativo de métodos de regresión de atenuación de aceleración máxima. Memoria Ttulo Ing. Civil, 196 (1998)Google Scholar
  33. 33.
    Ruiz, S., Saragoni, R.: Frmulas de atenuacin para la subduccin de chile considerando los dos mecanismos de sismognesis y los efectos del suelo. Congreso ACHISINA, Concepcin (2005)Google Scholar
  34. 34.
    United States Geological Survey: Product distribution user guide. ehppdl1.cr.usgs.gov (2012)Google Scholar
  35. 35.
    Aso, Y., Michimura, Y., Somiya, K., Ando, M., Miyakawa, O., Sekiguchi, T., Tatsumi, D., Yamamoto, H.: Interferometer design of the kagra gravitational wave detector. Phys. Rev. D 88, 043007 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    Zhang, H., Thurber, C., Rowe, C.: Automatic p-wave arrival detection and picking with multiscale wavelet analysis for single-component recordings. Bull. Seismol. Soc. Am. 93(5), 1904–1912 (2003)CrossRefGoogle Scholar
  37. 37.
    Stankiewicz, J., Bindi, D., Oth, A., Parolai, S.: Designing efficient earthquake early warning systems: case study of almaty, kazakhstan. J. Seismol. 17(4), 1125–1137 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    Picozzi, M., Bindi, D., Pittore, M., Kieling, K., Parolai, S.: Real-time risk assessment in seismic early warning and rapid response: a feasibility study in bishkek (kyrgyzstan). J. Seismol. 17(2), 485–505 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    Oth, A., Böse, M., Wenzel, F., Khler, N., Erdik, M.: Evaluation and optimization of seismic networks and algorithms for earthquake early warning? the case of istanbul (turkey). J. Geophys. Res.: Solid Earth 115(B10), 2156–2202 (2010)Google Scholar
  40. 40.
    Comte, D., Roecker, S.W., Suárez, G.: Velocity structure in northern chile: evidence of subducted oceanic crust in the nazca plate. Geophys. J. Int. 117(3), 625–639 (1994)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of PhysicsHarvard UniversityCambridgeUSA
  2. 2.Centro Sismológico Nacional de la Universidad de ChileSantiagoChile
  3. 3.LSST ObservatoryTucsonUSA
  4. 4.INFN, Sezione di FirenzeSesto FiorentinoItaly
  5. 5.Cerro Tololo Inter-American Observatory, National Optical Astronomy ObservatoryLa SerenaChile

Personalised recommendations