Experimental Astronomy

, Volume 39, Issue 2, pp 281–302 | Cite as

Status of the eLISA on table (LOT) electro-optical simulator for space based, long arms interferometers

  • Pierre GrüningEmail author
  • Hubert Halloin
  • Pierre Prat
  • Sylvain Baron
  • Julien Brossard
  • Christelle Buy
  • Antoine Petiteau
  • Gerhard Heinzel
  • Iouri Bykov
Original Article


We report on the progress in the realization of an electronic / optical simulator for space based, long arm interferometry and its application to the eLISA mission. The goal of this work is to generate realistic optics and electronics signals, especially simulating realistic propagation delays. The first measurements to characterize the simulator are also presented. With the present configuration, noise reduction factors of 5×107 for optical beat notes and 109 for RF beat notes have been achieved using the Time Delay Interferometry algorithm. The principle of the experiment has been validated and further work is ongoing to identify the residual noise sources and optimize the apparatus.


Interferometry eLISA Gravitational waves Experimental validation Time delay interferometry 



This work has been funded by the French Space Agency (CNES), under grants R-S07/SU-0001-012 and R-S08/SU-0001-012.


  1. 1.
    Bykov, I., Delgado, J.J.E., Marin, A.F.G., Heinzel, G., Danzmann, K.: Lisa phasemeter development: Advanced prototyping. J. Phys. Conf. Ser. 154(1), 012,017 (2009) CrossRefGoogle Scholar
  2. 2.
    Danzman, K., et al.: eLISA L2 White paper : The Gravitational Universe. (2013). [Online; accessed 28-August-2013]
  3. 3.
    Danzman, K., et al.: Elisa science web site. (2013). [Online; accessed 28-August-2013]
  4. 4.
    Danzmann, K.: {LISA} mission overview. Adv. Space Res. 25(6), 1129–1136 (2000). doi: 10.1016/S0273-1177(99)00973-4. Fundamental Physics in Space
  5. 5.
    Dhurandhar, S., Ni, W.T., Wang, G.: Numerical simulation of time delay interferometry for a lisa-like mission with the simplification of having only one interferometer. Adv. Space Res. 51(1), 198–206 (2013). doi: 10.1016/j.asr.2012.09.017 ADSCrossRefGoogle Scholar
  6. 6.
    Dhurandhar, S.V.: Time-delay interferometry and the relativistic treatment of lisa optical links. J. Phys. Conf. Ser. 154(1), 012,047 (2009) CrossRefGoogle Scholar
  7. 7.
    Esteban, J.J., García, A.F., Barke, S., Peinado, A.M., Cervantes, F.G., Bykov, I., Heinzel, G., Danzmann, K.: Experimental demonstration of weak-light laser ranging and data communication for lisa. Opt. Express 19(17), 15,937–15,946 (2011). doi: 10.1364/OE.19.015937. CrossRefGoogle Scholar
  8. 8.
    Esteban, J.J.J., Bykov, I., Marín, A., Heinzel, G., Danzmann, K.: Optical ranging and data transfer development for lisa. J. Phys. Conf. Ser. 154(1), 012,025 (2009) CrossRefGoogle Scholar
  9. 9.
    Fleddermann, R., Steier, F., Tröbs, M., Bogenstahl, J., Killow, C., Heinzel, G., Danzmann, K.: Measurement of the non-reciprocal phase noise of a polarization maintaining single-mode optical fiber. J. Phys. Conf. Ser. 154(1), 012,022 (2009) CrossRefGoogle Scholar
  10. 10.
    Heinzel, G., Esteban, J.J.J., Barke, S., Otto, M., Wang, Y., Garcia, A.F., Danzmann, K.: Auxiliary functions of the lisa laser link: ranging, clock noise transfer and data communication. Class. Quantum Gravity 28, 4008 (2011) CrossRefGoogle Scholar
  11. 11.
    Jennrich, O., et al.: LISA assessment study report (Yellow Book). (2011). [Online; accessed 28-August-2013]
  12. 12.
    Jennrich, O., et al.: NGO assessment study report (Yellow Book). (2012). [Online; accessed 28-August-2013]
  13. 13.
    José Esteban, J., García, A.F., Eichholz, J., Peinado, A.M., Bykov, I., Heinzel, G., Danzmann, K.: Ranging and phase measurement for LISA. J. Phys. Conf. Ser. 228(1), 012045 (2010). doi: 10.1088/1742-6596/228/1/012045 ADSCrossRefGoogle Scholar
  14. 14.
    McKenzie, K., Spero, R.E., Shaddock, D.A.: Performance of arm locking in lisa. Phys. Rev. D 80, 102,003 (2009). doi: 10.1103/PhysRevD.80.102003 CrossRefGoogle Scholar
  15. 15.
    Mitryk, S., Wand, V., Mueller, G.: Verification of time-delay interferometry techniques using the university of florida lisa interferometry simulator. Class. Quantum Gravity 27, 084,012 (2010) CrossRefGoogle Scholar
  16. 16.
    Mitryk, S.J., Mueller, G., Sanjuan, J.: Hardware-based demonstration of time-delay interferometry and tdi-ranging with spacecraft motion effects. Phys. Rev. D 86, 122,006 (2012). doi: 10.1103/PhysRevD.86.122006 CrossRefGoogle Scholar
  17. 17.
    Otto, M., Heinzel, G., Danzmann, K.: Tdi and clock noise removal for the split interferometry configuration of lisa. Classical and Quantum Gravity 29(20), 205,003 (2012) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Petiteau, A.: De la simulation de lisa a l’analyse des donnees. Ph.D. thesis, Université Paris Diderot - Paris 7 (2008)Google Scholar
  19. 19.
    Petiteau, A., Auger, G., Halloin, H., Jeannin, O., Plagnol, E., Pireaux, S., Regimbau, T., Vinet, J.Y.: Lisacode: A scientific simulator of lisa. Phys. Rev. D 77, 23,002 (2008). doi: 10.1103/PhysRevD.77.023002. CrossRefGoogle Scholar
  20. 20.
    Shaddock, D.A., Tinto, M., Estabrook, F.B., Armstrong, J.W.: Data combinations accounting for lisa spacecraft motion. Phys. Rev. D 68, 061,303 (2003). doi: 10.1103/PhysRevD.68.061303 CrossRefGoogle Scholar
  21. 21.
    Shaddock, D.A., Ware, B., Spero, R.E., Vallisneri, M.: Postprocessed time-delay interferometry for lisa. Phys. Rev. D 70, 081,101 (2004). doi: 10.1103/PhysRevD.70.081101 CrossRefGoogle Scholar
  22. 22.
    Sheard, B.S., Gray, M.B., McClelland, D.E., Shaddock, D.A.: Laser frequency stabilization by locking to a {LISA} arm. Phys. Lett. A 320(1), 9–21 (2003). doi: 10.1016/j.physleta.2003.10.076. http://www.sciencedirect. com/science/article/pii/S0375960103016578 ADSCrossRefGoogle Scholar
  23. 23.
    Sutton, A., McKenzie, K., Ware, B., Shaddock, D.A.: Laser ranging and communications for lisa. Opt. Express 18(20), 20,759–20,773 (2010). doi: 10.1364/OE.18.020759. CrossRefGoogle Scholar
  24. 24.
    Sutton, A., Shaddock, D.A.: Laser frequency stabilization by dual arm locking for lisa. Phys. Rev. D 78(082), 001 (2008). doi: 10.1103/PhysRevD.78.082001 Google Scholar
  25. 25.
    Sutton, A.J., McKenzie, K., Ware, B, de Vine, G., Spero, R.E., Klipstein, W., Shaddock, D.A.: Improved optical ranging for space based gravitational wave detection. Class. Quantum Gravity 30(7), 075,008 (2013) CrossRefGoogle Scholar
  26. 26.
    Sweeney, D., Mueller, G.: Experimental verification of clock noise transfer and components for space based gravitational wave detectors. Opt. Express 20(23), 25,603–25,612 (2012). doi: 10.1364/OE.20.025603. CrossRefGoogle Scholar
  27. 27.
    Sylvestre, J.: Simulations of laser locking to a lisa arm. Phys. Rev. D 70, 102,002 (2004). doi: 10.1103/PhysRevD.70.102002 CrossRefGoogle Scholar
  28. 28.
    Thorpe, J., Maghami, P., Livas, J.: Time domain simulations of arm locking in lisa. Phys. Rev. D 83(12), 122,002 (2011). doi: 10.1103/PhysRevD.83.122002. CrossRefGoogle Scholar
  29. 29.
    Thorpe, J.I.: Lisa long-arm interferometry. Class. Quantum Gravity 27(8), 084,008 (2010) MathSciNetCrossRefGoogle Scholar
  30. 30.
    Tinto, M., Dhurandhar, S.V.: Time-delay interferometry. Living Rev. Relativ. 8(4) (2005). doi: 10.12942/lrr-2005-4. lrr-2005-4
  31. 31.
    Tinto, M., Shaddock, D.A., Sylvestre, J., Armstrong, J.W.: Implementation of time-delay interferometry for lisa. Phys. Rev. D 67, 122,003 (2003). doi: 10.1103/PhysRevD.67.122003 CrossRefGoogle Scholar
  32. 32.
    Tröbs, M., Heinzel, G.: Improved spectrum estimation from digitized time series on a logarithmic frequency axis. Measurement 39(2), 120–129 (2006). doi: 10.1016/j.measurement.2005.10.010 CrossRefGoogle Scholar
  33. 33.
    Tröbs, M., Heinzel, G.: Corrigendum to ‘improved spectrum estimation from digitized time series on a logarithmic frequency axis’ [measurement 39 (2006) 120 - 129]. Measurement 42(1), 170 (2009). doi: 10.1016/j.measurement.2008.04.004. CrossRefGoogle Scholar
  34. 34.
  35. 35.
  36. 36.
    de Vine, G., Ware, B., McKenzie, K., Spero, R.E., Klipstein, W.M., Shaddock, D.A.: Experimental demonstration of time-delay interferometry for the laser interferometer space antenna. Phys. Rev. Lett. 104, 211,103 (2010). doi: 10.1103/PhysRevLett.104.211103 CrossRefGoogle Scholar
  37. 37.
    Wand, V., Yu, Y., Mitryk, S., Sweeney, D., Preston, A., Tanner, D., Mueller, G., Thorpe, J.I., Livas, J.: Implementation of armlocking with a delay of 1 second in the presence of doppler shifts. Journal of Physics: Conference Series 154(1), 012,024 (2009) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Pierre Grüning
    • 1
    Email author
  • Hubert Halloin
    • 1
  • Pierre Prat
    • 1
  • Sylvain Baron
    • 1
  • Julien Brossard
    • 1
  • Christelle Buy
    • 1
  • Antoine Petiteau
    • 1
  • Gerhard Heinzel
    • 2
  • Iouri Bykov
    • 2
  1. 1.APC, AstroParticule et CosmologieUniversité Paris Diderot, CNRS/IN2P3, CEA/IrfuParis Cedex 13France
  2. 2.Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)HannoverGermany

Personalised recommendations