Advertisement

Experimental Astronomy

, Volume 39, Issue 1, pp 119–165 | Cite as

Liverpool telescope 2: a new robotic facility for rapid transient follow-up

  • C. M. Copperwheat
  • I. A. Steele
  • R. M. Barnsley
  • S. D. Bates
  • D. Bersier
  • M. F. Bode
  • D. Carter
  • N. R. Clay
  • C. A. Collins
  • M. J. Darnley
  • C. J. Davis
  • C. M. Gutierrez
  • D. J. Harman
  • P. A. James
  • J. H. Knapen
  • S. Kobayashi
  • J. M. Marchant
  • P. A. Mazzali
  • C. J. Mottram
  • C. G. Mundell
  • A. Newsam
  • A. Oscoz
  • E. Palle
  • A. Piascik
  • R. Rebolo
  • R. J. Smith
Original Article

Abstract

The Liverpool Telescope is one of the world’s premier facilities for time domain astronomy. The time domain landscape is set to radically change in the coming decade, with synoptic all-sky surveys such as LSST providing huge numbers of transient detections on a nightly basis; transient detections across the electromagnetic spectrum from other major facilities such as SVOM, SKA and CTA; and the era of ‘multi-messenger astronomy’, wherein astrophysical events are detected via non-electromagnetic means, such as neutrino or gravitational wave emission. We describe here our plans for the Liverpool Telescope 2: a new robotic telescope designed to capitalise on this new era of time domain astronomy. LT2 will be a 4-metre class facility co-located with the Liverpool Telescope at the Observatorio del Roque de Los Muchachos on the Canary island of La Palma. The telescope will be designed for extremely rapid response: the aim is that the telescope will take data within 30 seconds of the receipt of a trigger from another facility. The motivation for this is twofold: firstly it will make it a world-leading facility for the study of fast fading transients and explosive phenomena discovered at early times. Secondly, it will enable large-scale programmes of low-to-intermediate resolution spectral classification of transients to be performed with great efficiency. In the target-rich environment of the LSST era, minimising acquisition overheads will be key to maximising the science gains from any follow-up programme. The telescope will have a diverse instrument suite which is simultaneously mounted for automatic changes, but it is envisaged that the primary instrument will be an intermediate resolution, optical/infrared spectrograph for scientific exploitation of transients discovered with the next generation of synoptic survey facilities. In this paper we outline the core science drivers for the telescope, and the requirements for the optical and mechanical design.

Keywords

Telescopes Robotic Spectrographs Supernovae Gamma-ray bursts Gravitational waves 

Notes

Acknowledgments

JHK acknowledges financial support to the DAGAL network from the People Programme (Marie Curie Actions) of the European Unions Seventh Framework Programme FP7/2007-2013/ under REA grant agreement number PITN-GA-2011-289313, and from the Spanish MINECO under grant number AYA2013-41243-P. DC is supported by a Leverhulme Emeritus Fellowship from the Leverhulme Trust. We thank the anonymous referee for their comments, which have led to a number of important improvements to this paper.

References

  1. 1.
    Abadie, J., Abbott, B.P., Abbott, R., Abernathy, M., Accadia, T., Acernese, F., Adams, C., Adhikari, R., Affeldt, C., Allen, B., et al.: Beating the Spin-down Limit on Gravitational Wave Emission from the Vela Pulsar. ApJ 737, 93 (2011). doi: 10.1088/0004-637X/737/2/93. arXiv:1104.2712 ADSGoogle Scholar
  2. 2.
    Abadie, J., Abbott, B.P., Abbott, R., Abbott, T.D., Abernathy, M., Accadia, T., Acernese, F., Adams, C., Adhikari, R., Affeldt, C., et al.: First low-latency LIGO + Virgo search for binary inspirals and their electromagnetic counterparts. A&A 541, A155 (2012Natureexlaba). doi: 10.1051/0004-6361/201218860. arXiv:1112.6005 ADSGoogle Scholar
  3. 3.
    Abadie, J., Abbott, B.P., Abbott, T.D., Abbott, R., Abernathy, M., Adams, C., Adhikari, R., Affeldt, C., Ajith, P., Allen, B., et al.: Implications for the Origin of GRB 051103 from LIGO Observations. ApJ 755, 2 (2012a). doi: 10.1088/0004-637X/755/1/2. arXiv:1201.4413 ADSGoogle Scholar
  4. 4.
    Abbott, B.P., Abbott, R., Adhikari, R., Ajith, P., Allen, B., Allen, G., Amin, R.S., Anderson, S.B., Anderson, W.G., Arain, M.A., et al.: LIGO: the Laser Interferometer Gravitational-Wave Observatory. Rep. Prog. Phys. 72(7), 076901 (2009). doi: 10.1088/0034-4885/72/7/076901. arXiv:0711.3041 ADSGoogle Scholar
  5. 5.
    Abbott, B.P., Abbott, R., Acernese, F., Adhikari, R., Ajith, P., Allen, B., Allen, G., Alshourbagy, M., Amin, R.S., Anderson, S.B., et al.: Searches for Gravitational Waves from Known Pulsars with Science Run 5 LIGO Data. ApJ 713, 671–685 (2010). doi: 10.1088/0004-637X/713/1/671. arXiv:0909.3583 ADSGoogle Scholar
  6. 6.
    Abdo, A.A., Ackermann, M., Ajello, M., Axelsson, M., Baldini, L., Ballet, J., Barbiellini, G., Bastieri, D., Baughman, B.M., Bechtol, K., et al.: A change in the optical polarization associated with a γ-ray flare in the blazar 3C279. Nature 463, 919–923 (2010). doi: 10.1038/nature08841. arXiv:1004.3828 ADSGoogle Scholar
  7. 7.
    Abell, P.A., Allison, J., Anderson, S.F., Andrew, J.R., Angel, J.R.P., Armus, L., Arnett, D., Asztalos, S.J., Axelrod, T.S., et al.: LSST Science Book, Version 2.0. arXiv:0912.0201 (2009)
  8. 8.
    Abramowski, A., Acero, F., Aharonian, F., Akhperjanian, A.G., Anton, G., Balzer, A., Barnacka, A., Barres de Almeida, U., Becherini, Y., Becker, J., et al.: The 2010 very high energy γ-ray flare and 10 years of multi-wavelength observations of M 87. ApJ 746, 151 (2012). doi: 10.1088/0004-637X/746/2/151. arXiv:1111.5341 ADSGoogle Scholar
  9. 9.
    Actis, M., Agnetta, G., Aharonian, F., Akhperjanian, A., Aleksić, J., Aliu, E., Allan, D., Allekotte, I., Antico, F., Antonelli, L.A., et al.: Design concepts for the Cherenkov telescope array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy. Exp. Astron. 32, 193–316 (2011). doi: 10.1007/s10686-011-9247-0. arXiv:1008.3703 ADSGoogle Scholar
  10. 10.
    Ageron, M., Aguilar, J.A., Al Samarai, I., Albert, A., Ameli, F., André, M., Anghinolfi, M., Anton, G., Anvar, S., Ardid, M., et al.: ANTARES: The first undersea neutrino telescope. Nucl. Inst. Methods Phys. Res. A 656, 11–38 (2011). doi: 10.1016/j.nima.2011.06.103. arXiv:1104.1607 ADSGoogle Scholar
  11. 11.
    Agnoletto, I., Benetti, S., Cappellaro, E., Zampieri, L., Turatto, M., Mazzali, P., Pastorello, A., Della Valle, M., Bufano, F., Harutyunyan, A., Navasardyan, H., Elias-Rosa, N., Taubenberger, S., Spiro, S., Valenti, S.: SN 2006gy: was it really extraordinary?. ApJ 691, 1348–1359 (2009). doi: 10.1088/0004-637X/691/2/1348. arXiv:0810.0635 ADSGoogle Scholar
  12. 12.
    Akerlof, C.W., Kehoe, R.L., McKay, T.A., Rykoff, E.S., Smith, D.A., Casperson, D.E., McGowan, K.E., Vestrand, W.T., Wozniak, P.R., Wren, J.A., Ashley, M.C.B., Phillips, M.A., Marshall, S.L., Epps, H.W., Schier, J.A.: The ROTSE-III Robotic Telescope System. PASP 115, 132–140 (2003). doi: 10.1086/345490. arXiv:astro-ph/0210238 ADSGoogle Scholar
  13. 13.
    Anderson, J.P., James, P.A.: Constraints on core-collapse supernova progenitors from correlations with H α emission. MNRAS 390, 1527–1538 (2008). doi: 10.1111/j.1365-2966.2008.13843.x. arXiv:0809.0236 ADSGoogle Scholar
  14. 14.
    Astier, P., Guy, J., Regnault, N., Pain, R., Aubourg, E., Balam, D., Basa, S., Carlberg, R.G., Fabbro, S., Fouchez, D., Hook, I.M., Howell, D.A., Lafoux, H., Neill, J.D., Delabrouille, P.: The Supernova Legacy Survey: measurement of Ω M, Ω and w from the first year data set. A&A 447, 31–48 (2006). doi: 10.1051/0004-6361:20054185. arXiv:astro-ph/0510447 ADSGoogle Scholar
  15. 15.
    Bade, N., Komossa, S., Dahlem, M.: Detection of an extremely soft X-ray outburst in the HII-like nucleus of NGC 5905. A&A 309, L35–L38 (1996)ADSGoogle Scholar
  16. 16.
    Bailer-Jones, C.A.L.: The ILIUM forward modelling algorithm for multivariate parameter estimation and its application to derive stellar parameters from Gaia spectrophotometry. MNRAS 403, 96–116 (2010). doi: 10.1111/j.1365-2966.2009.16125.x. arXiv:0911.5242 ADSGoogle Scholar
  17. 17.
    Bellm, E.: The Zwicky Transient Facility. In: Wozniak, P.R., Graham, M.J., Mahabal, A.A., Seaman, R. (eds.) The Third Hot-wiring the Transient Universe Workshop. arXiv:1410.8185, pp. 27–33 (2014)
  18. 18.
    Bely, P.Y.: The Design and Construction of Large Optical Telescopes. Springer (2003)Google Scholar
  19. 19.
    Berdyugina, S.V., Berdyugin, A.V., Fluri, D.M., Piirola, V.: First detection of polarized scattered light from an exoplanetary atmosphere. ApJL 673, L83–L86 (2008). doi: 10.1086/527320. arXiv:0712.0193 ADSGoogle Scholar
  20. 20.
    Berdyugina, S.V., Berdyugin, A.V., Fluri, D.M., Piirola, V.: Polarized reflected light from the exoplanet HD189733b: first multicolor observations and confirmation of detection. ApJL 728, L6 (2011). doi: 10.1088/2041-8205/728/1/L6. arXiv:1101.0059 ADSGoogle Scholar
  21. 21.
    Berger, E., Fong, W., Chornock, R.: An r-process Kilonova associated with the short-hard GRB 130603B. ApJL 774, L23 (2013). doi: 10.1088/2041-8205/774/2/L23. arXiv:1306.3960 ADSGoogle Scholar
  22. 22.
    Bildsten, L., Shen, K.J., Weinberg, N.N., Nelemans, G.: Faint Thermonuclear Supernovae from AM Canum Venaticorum Binaries. ApJL 662, L95–L98 (2007). doi: 10.1086/519489. arXiv:astro-ph/0703578 ADSGoogle Scholar
  23. 23.
    Bloom, J.S., Giannios, D., Metzger, B.D., Cenko, S.B., Perley, D.A., Butler, N.R., Tanvir, N.R., Levan, A.J., O’Brien, P.T., Strubbe, L.E., De Colle, F., Ramirez-Ruiz, E., Lee, W.H., Nayakshin, S.: A possible relativistic jetted outburst from a massive black hole fed by a tidally disrupted star. Science 333, 203(2011). doi: 10.1126/science.1207150. arXiv:1104.3257 ADSGoogle Scholar
  24. 24.
    Blümer, J., Engel, R., Hörandel, J.R.: Cosmic rays from the knee to the highest energies. Prog. Part. Nucl. Phys. 63, 293–338 (2009). doi: 10.1016/j.ppnp.2009.05.002. arXiv:0904.0725 ADSGoogle Scholar
  25. 25.
    Bode, M.F.: Robotic Observatories. Edited by Michael F. Bode. In: Bode, M.F. (ed.), p 139. Wiley, Chichester (1995)Google Scholar
  26. 26.
    Boer, M., Gendre, B., Stratta, G.: Are Ultra-long Gamma-Ray Bursts different? arXiv:1310.4944 (2013)
  27. 27.
    Bogdanović, T., Eracleous, M., Mahadevan, S., Sigurdsson, S., Laguna, P.: Tidal disruption of a star by a black hole: observational signature. ApJ 610, 707–721 (2004). doi: 10.1086/421758. arXiv:astro-ph/0404256 ADSGoogle Scholar
  28. 28.
    Borucki, W.J., Koch, D., Basri, G., Batalha, N., Brown, T., Caldwell, D., Caldwell, J., Christensen-Dalsgaard, J., Cochran, W.D., DeVore, E., Dunham, E.W., Dupree, A.K., Gautier, T.N., Geary, J.C., Gilliland, R.: Kepler Planet-Detection Mission: Introduction and First Results. Science 327, 977– (2010). doi: 10.1126/science.1185402
  29. 29.
    Briggs, M.S., Paciesas, W.S., Pendleton, G.N., Meegan, C.A., Fishman, G.J., Horack, J.M., Brock, M.N., Kouveliotou, C., Hartmann, D.H., Hakkila, J.: BATSE Observations of the Large-Scale Isotropy of Gamma-Ray Bursts. ApJ 459, 40 (1996). doi: 10.1086/176867. arXiv:astro-ph/9509078 ADSGoogle Scholar
  30. 30.
    Bromberg, O., Nakar, E., Piran, T., Sari, R.: Short versus Long and Collapsars versus Non-collapsars: A Quantitative Classification of Gamma-Ray Bursts. ApJ 764, 179 (2013). doi: 10.1088/0004-637X/764/2/179. arXiv:1210.0068 ADSGoogle Scholar
  31. 31.
    Brown, P.G., Assink, J.D., Astiz, L., Blaauw, R., Boslough, M.B., Borovička, J., Brachet, N., Brown, D., Campbell-Brown, M., Ceranna, L., Cooke, W., de Groot-Hedlin, C., Drob, D.P., Edwards, W., Evers, L.G., Garces, M., Gill, J., Hedlin, M., Kingery, A., Laske, G., Le Pichon, A., Mialle, P., Moser, D.E., Saffer, A., Silber, E., Smets, P., Spalding, R.E., Spurný, P., Tagliaferri, E., Uren, D., Weryk, R.J., Whitaker, R., Krzeminski, Z.: A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature 503, 238–241 (2013). doi: 10.1038/nature12741 ADSGoogle Scholar
  32. 32.
    Bulgarelli, A., Fioretti, V., Contreras, J.L., Lorca, A., Aboudan, A., Rodríguez-Vázquez, J.J., Lombardi, S., Maier, G., Antonelli, L.A., Bastieri, D., Boisson, C., Borkowski, J., Buson, S., Carosi, A.: The real-time analysis of the cherenkov telescope array observatory . arXiv:1307.6489(2013)
  33. 33.
    Burrows, D.N., Kennea, J.A., Ghisellini, G., Mangano, V., Zhang, B., Page, K.L., Eracleous, M., Romano, P., Sakamoto, T., Falcone, A.D., Osborne, J.P., Campana, S., Beardmore, A.P., Breeveld, A.A.: Relativistic jet activity from the tidal disruption of a star by a massive black hole. Nature 476, 421–424 (2011). doi: 10.1038/nature10374. arXiv:1104.4787 ADSGoogle Scholar
  34. 34.
    Bus, S.J., Binzel, R.P.: Phase II of the small main-belt asteroid spectroscopic survey. A feature-based taxonomy. Icarus 158, 146–177 (2002). doi: 10.1006/icar.2002.6856 ADSGoogle Scholar
  35. 35.
    Campana, S., Mangano, V., Blustin, A.J., Brown, P., Burrows, D.N., Chincarini, G., Cummings, J.R., Cusumano, G., Della Valle, M., Malesani, D., Mészáros, P., Nousek, J.A., Page, M.: The association of GRB 060218 with a supernova and the evolution of the shock wave. Nature 442, 1008–1010 (2006). doi: 10.1038/nature04892. arXiv:astro-ph/0603279 ADSGoogle Scholar
  36. 36.
    Cano, Z., Bersier, D., Guidorzi, C., Kobayashi, S., Levan, A.J., Tanvir, N.R., Wiersema, K., D’Avanzo, P., Fruchter, A.S., Garnavich, P., Gomboc, A., Gorosabel, J.: XRF 100316D/SN 2010bh and the Nature of Gamma-Ray Burst Supernovae. ApJ 740, 41 (2011). doi: 10.1088/0004-637X/740/1/41. arXiv:1104.5141 ADSGoogle Scholar
  37. 37.
    Carilli, C.L., Rawlings, S.: Science with the square kilometre array. NewAR 48, 979–1606 (2004). doi: 10.1016/j.newar.2004.09.001 ADSGoogle Scholar
  38. 38.
    Catala, C., Arentoft, T., Fridlund, M., Lindberg, R., Mas-Hesse, J.M., Micela, G., Pollacco, D., Poretti, E., Rauer, H., Roxburgh, I., Stankov, A., Udry, S.: PLATO : PLAnetary Transits and Oscillations of Stars - The Exoplanetary System Explorer. In: Coudé du Foresto, V, Gelino, D.M., Ribas, I. (eds.) Pathways Towards Habitable Planets, Astronomical Society of the Pacific Conference Series, vol. 430, p 260 (2010)Google Scholar
  39. 39.
    Cenko, S.B., Krimm, H.A., Horesh, A., Rau, A., Frail, D.A., Kennea, J.A., Levan, A.J., Holland, S.T., Butler, N.R., Quimby, R.M., Bloom, J.S., Filippenko, A.V.: Swift J2058.4+0516: Discovery of a possible second relativistic tidal disruption flare? ApJ 753, 77 (2012). doi: 10.1088/0004-637X/753/1/77. arXiv:1107.5307 ADSGoogle Scholar
  40. 40.
    Charbonneau, D., Brown, T.M., Noyes, R.W., Gilliland, R.L.: Detection of an extrasolar planet atmosphere. ApJ 568, 377–384 (2002). doi: 10.1086/338770. arXiv:astro-ph/0111544 ADSGoogle Scholar
  41. 41.
    Cheung, C, C., Shore, S.N., Jean, P.: on behalf of the Fermi-LAT Collaboration (2014) Fermi Discovers a New Population of Gamma-ray Novae. In: American Astronomical Society Meeting Abstracts, American Astronomical Society Meeting Abstracts, vol. 223, p 113Google Scholar
  42. 42.
    Chevalier, R.A., Irwin, C.M.: Shock breakout in dense mass loss: Luminous Supernovae. ApJL 729, L6 (2011). doi: 10.1088/2041-8205/729/1/L6. arXiv:1101.1111 ADSGoogle Scholar
  43. 43.
    Chyba, C.F., Thomas, P.J., Zahnle, K.J.: The 1908 Tunguska explosion - Atmospheric disruption of a stony asteroid. Nature 361, 40–44 (1993). doi: 10.1038/361040a0 ADSGoogle Scholar
  44. 44.
    Copperwheat, C.M., Marsh, T.R., Dhillon, V.S., Littlefair, S.P., Hickman, R., Gänsicke, B.T., Southworth, J.: Physical properties of IP Pegasi: an eclipsing dwarf nova with an unusually cool white dwarf. MNRAS 402, 1824–1840 (2010). doi: 10.1111/j.1365-2966.2009.16010.x. arXiv:0911.1637 ADSGoogle Scholar
  45. 45.
    Copperwheat, C.M., Marsh, T.R., Littlefair, S.P., Dhillon, V.S., Ramsay, G., Drake, A.J., Gänsicke, B.T., Groot, P.J., Hakala, P., Koester, D., Nelemans, G., Roelofs, G., Southworth, J., Steeghs, D., Tulloch, S.: SDSS J0926 + 3624: the shortest period eclipsing binary star. MNRAS 410, 1113–1129 (2011). doi: 10.1111/j.1365-2966.2010.17508.x. arXiv:1008.1907 ADSGoogle Scholar
  46. 46.
    Copperwheat, C.M., Steele, I.A., Bates, S.D., Smith, R.J., Bode, M.F., Baker, I., Peacocke, T., Thomson, K.: Liverpool Telescope 2: a new robotic facility for time domain astronomy in 2020+. arXiv:1408.1403 (2014)
  47. 47.
    Costa, E., Frontera, F., Heise, J., Feroci, M., in’t Zand, J., Fiore, F., Cinti, M.N., Dal Fiume, D., Nicastro, L., Orlandini, M., Palazzi, E.: Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997. Nature 387, 783–785 (1997). doi: 10.1038/42885. arXiv:astro-ph/9706065 ADSGoogle Scholar
  48. 48.
    Dalton, G., Trager, S.C., Abrams, D.C., Carter, D., Bonifacio, P., Aguerri, J.A.L., MacIntosh, M., Evans, C., Lewis, I., Navarro, R., Agocs, T., Dee, K., Rousset, S., Tosh, I., Middleton, K.: WEAVE: the next generation wide-field spectroscopy facility for the William Herschel Telescope, vol. 8446 (2012)Google Scholar
  49. 49.
    de Bruijne, J.H.J.: Science performance of Gaia, ESA’s space-astrometry mission. Ap&SS 341, 31–41 (2012). doi: 10.1007/s10509-012-1019-4. arXiv:1201.3238 ADSGoogle Scholar
  50. 50.
    de Caneva, G., Barres de Almeida, U., Lindfors, E., Saito, K., Schultz, C., Sitarek, J., Tavecchio, F., Lucarelli, F., Pittori, C., Vercellone, S., Verrecchia, F., Buson, S., D’Ammando, F., Hayashida, M., Lahteenmaki, A., Tornikoski, M., Hovatta, T., Mundell, C., Steele, I., Nilsson, K., Marscher, A., Jorstad, S.: The FSRQs 3c 279 and PKS 1510-089: Magic latest results and multiwavelength observations. Int. J. Mod. Phys. Conf. Ser. 28, 1460176 (2014). doi: 10.1142/S2010194514601768 Google Scholar
  51. 51.
    de Jong, R.S., Bellido-Tirado, O., Chiappini, C., Depagne, É, Haynes, R., Johl, D., Schnurr, O., Schwope, A., Walcher, J., Haynes, D., Kelz, A., Kitaura, F.S., Lamer, G., Minchev, I.: 4MOST: 4-metre multi-object spectroscopic telescope, vol. 8446 (2012). arXiv:1206.6885
  52. 52.
    Degallaix, J., Accadia, T., Acernese, F., Agathos, M., Allocca, A., Astone, P., Ballardin, G., Barone, F., Bejger, M., Beker, M.G., Bitossi, M., Bizouard, M.A. Auger, G, Binétruy, P, Plagnol, E (eds.): Advanced Virgo Status, vol. 467 (2013)Google Scholar
  53. 53.
    Deming, D., Seager, S., Richardson, L.J., Harrington, J. Infrared radiation from an extrasolar planet, vol. 434, pp. 740–743 (2005). arXiv:astro-ph/0503554
  54. 54.
    Deming, D., Harrington, J., Seager, S., Richardson, L.J.: Strong Infrared Emission from the Extrasolar Planet HD 189733b. ApJ 644, 560–564 (2006). doi: 10.1086/503358. arXiv:astro-ph/0602443 ADSGoogle Scholar
  55. 55.
    Donato, D., Cenko, S.B., Covino, S., Troja, E., Pursimo, T., Cheung, C.C., Fox, O., Kutyrev, A., Campana, S., Fugazza, D., Landt, H., Butler, N.R.: A tidal disruption event in a nearby galaxy hosting an intermediate mass black hole. ApJ 781, 59 (2014). doi: 10.1088/0004-637X/781/2/59. arXiv:1311.6162 ADSGoogle Scholar
  56. 56.
    Donley, J.L., Brandt, W.N., Eracleous, M., Boller, T.: Large-amplitude X-Ray outbursts from galactic nuclei: A systematic survey using ROSAT archival data. AJ 124, 1308–1321 (2002). doi: 10.1086/342280. arXiv:astro-ph/0206291 ADSGoogle Scholar
  57. 57.
    Dubus, G.: Gamma-ray binaries and related systems. A&AR 21, 64 (2013). doi: 10.1007/s00159-013-0064-5. arXiv:1307.7083 ADSGoogle Scholar
  58. 58.
    Egorov, A.E., Postnov, K.A.: On the possible observational manifestation of the impact of a supernova shock on the neutron star magnetosphere. Astron. Lett. 35, 241–246 (2009). doi: 10.1134/S1063773709040033. arXiv:0810.2219 ADSGoogle Scholar
  59. 59.
    Eichler, D., Livio, M., Piran, T., Schramm, D.N.: Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars. Nature 340, 126–128 (1989). doi: 10.1038/340126a0 ADSGoogle Scholar
  60. 60.
    Falcke, H., Rezzolla, L.: Fast radio bursts: the last sign of supramassive neutron stars. A&A 562, A137 (2014). doi: 10.1051/0004-6361/201321996. arXiv:1307.1409 ADSGoogle Scholar
  61. 61.
    Gal-Yam, A., Fox, D.B., Price, P.A., Ofek, E.O., Davis, M.R., Leonard, D.C., Soderberg, A.M., Schmidt, B.P., Lewis, K.M., Peterson, B.A., Kulkarni, S.R., Berger, E., Cenko, S.B., Sari, R.: A novel explosive process is required for the γ-ray burst GRB 060614. Nature 444, 1053–1055 (2006). doi: 10.1038/nature05373. arXiv:astro-ph/0608257 ADSGoogle Scholar
  62. 62.
    Gal-Yam, A., Mazzali, P., Ofek, E.O., Nugent, P.E., Kulkarni, S.R., Kasliwal, M.M., Quimby, R.M., Filippenko, A.V., Cenko, S.B., Chornock, R., Waldman, R., Kasen, D., Sullivan, M., Beshore, E.C.: Supernova 2007bi as a pair-instability explosion. Nature 462, 624–627 (2009). doi: 10.1038/nature08579. arXiv:1001.1156 ADSGoogle Scholar
  63. 63.
    Galama, T.J., Vreeswijk, P.M., van Paradijs, J., Kouveliotou, C., Augusteijn, T., Böhnhardt, H., Brewer, J.P., Doublier, V., Gonzalez, J.F., Leibundgut, B., Lidman, C., Hainaut, O.R., Patat, F.: An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 395, 670–672 (1998). doi: 10.1038/27150. arXiv:astro-ph/9806175 ADSGoogle Scholar
  64. 64.
    Gehrels, N., Chincarini, G., Giommi, P., Mason, K.O., Nousek, J.A., Wells, A.A., White, N.E., Barthelmy, S.D., Burrows, D.N., Cominsky, L.R., Hurley, K.C., Marshall, F.E., Mészáros, P., Roming, P.W.A., Angelini, L., Barbier, L.M., Belloni, T.: The swift gamma-ray burst mission. ApJ 611, 1005–1020 (2004). doi: 10.1086/422091 ADSGoogle Scholar
  65. 65.
    Gehrels, N., Sarazin, C.L., O’Brien, P.T., Zhang, B., Barbier, L., Barthelmy, S.D., Blustin, A., Burrows, D.N., Cannizzo, J., Cummings, J.R., Goad, M., Holland, S.T., Hurkett, C.P., Kennea, J.A., Levan, A., Markwardt, C.B., Mason, K.O., Meszaros, P., Page, M., Palmer, D.M., Rol, E., Sakamoto, T., Willingale, R., Angelini, L., Beardmore, A., Boyd, P.T., Breeveld, A., Campana, S., Chester, M.M., Chincarini, G., Cominsky, L.R., Cusumano, G., de Pasquale, M., Fenimore, E.E., Giommi, P., Gronwall, C., Grupe, D., Hill, J.E., Hinshaw, D., Hjorth, J., Hullinger, D., Hurley, K.C., Klose, S., Kobayashi, S., Kouveliotou, C., Krimm H.A., Mangano, V., Marshall, F.E., McGowan, K., Moretti, A., Mushotzky, R.F., Nakazawa, K., Norris, J.P., Nousek, J.A., Osborne, J.P., Page, K., Parsons, A.M., Patel, S., Perri, M., Poole, T., Romano, P., Roming, P.W.A., Rosen, S., Sato, G., Schady, P., Smale, A.P., Sollerman, J., Starling, R., Still, M., Suzuki, M., Tagliaferri, G., Takahashi, T., Tashiro, M., Tueller, J., Wells, A.A., White, N.E., Wijers, RAMJ: A short γ-ray burst apparently associated with an elliptical galaxy at redshift z = 0.225. Nature 437, 851–854 (2005). doi: 10.1038/nature04142. arXiv:astro-ph/0505630 ADSGoogle Scholar
  66. 66.
    Gendre, B., Stratta, G., Atteia, J.L., Basa, S., Boer̈ M., Coward D.M., Cutini S., D’Elia, V., Howell E.J., Klotz A., Piro L.: The Ultra-long Gamma-Ray Burst 111209A: The Collapse of a Blue Supergiant?. ApJ 766, 30 (2013). doi: 10.1088/0004-637X/766/1/30. arXiv:1212.2392
  67. 67.
    Gezari, S., Basa, S., Martin, D.C., Bazin, G., Forster, K., Milliard, B., Halpern, J.P., Friedman, P.G., Morrissey, P., Neff, S.G., Schiminovich, D., Seibert, M., Small, T., Wyder, T.K.: UV/Optical Detections of Candidate Tidal Disruption Events by GALEX and CFHTLS. ApJ 676, 944–969 (2008a). doi: 10.1086/529008. arXiv:0712.4149 ADSGoogle Scholar
  68. 68.
    Gezari, S., Dessart, L., Basa, S., Martin, D.C., Neill, J.D., Woosley, S.E., Hillier, D.J., Bazin, G., Forster, K., Friedman, P.G., Du, J.L., Mazure, A., Morrissey, P., Neff, S.G., Schiminovich, D., Wyder, T.K.: Probing Shock Breakout with Serendipitous GALEX Detections of Two SNLS Type II-P Supernovae. ApJL 683, L131–L134 (2008b). doi: 10.1086/591647. arXiv:0804.1123 ADSGoogle Scholar
  69. 69.
    Gezari, S., Strubbe, L., Bloom, J.S., Grindlay, J.E., Soderberg, A., Elvis, M., Coppi, P., Lawrence, A., Ivezic, Z., Merritt, D., Komossa, S., Halpern, J., Eracleous, M.: Probing Quiescent Massive Black Holes: Insights from Tidal Disruption Events, vol. 2010 (2009). arXiv:0903.1107
  70. 70.
    Glassmeier, K.H., Boehnhardt, H., Koschny, D., Kührt, E., Richter, I.: The Rosetta mission: Flying towards the origin of the solar system. SSR 128, 1–21 (2007). doi: 10.1007/s11214-006-9140-8 ADSGoogle Scholar
  71. 71.
    Götz, D., Paul, J., Basa, S., Wei, J., Zhang, S.N., Atteia, J.L., Barret, D., Cordier, B., Claret, A., Deng, J., Fan, X., Hu, J.Y., Huang, M., Mandrou, P., Mereghetti, S., Qiu, Y., Wu, B.: American Institute of Physics Conference Series, American Institute of Physics Conference Series 1133, 25–30 (2009). doi: 10.1063/1.3155898. arXiv:0906.4195
  72. 72.
    Greiner, J., Bornemann, W., Clemens, C., Deuter, M., Hasinger, G., Honsberg, M., Huber, H., Huber, S., Krauss, M., Krühler, T., Yoldaş, A.K.: GROND - a 7-Channel Imager. PASP 120, 405–424 (2008). doi: 10.1086/587032. arXiv:0801.4801 ADSGoogle Scholar
  73. 73.
    Greiner, J., Krühler, T., McBreen, S., Ajello, M., Giannios, D., Schwarz, R., Savaglio, S., Yoldaş, A.K., Clemens, C., Stefanescu, A., Sala, G., Bertoldi, F., Szokoly, G., Klose, S.: A strong optical flare before the rising afterglow of GRB 080129. ApJ 693, 1912–1919 (2009). doi: 10.1088/0004-637X/693/2/1912. arXiv:0811.4291 ADSGoogle Scholar
  74. 74.
    Guidorzi, C., Monfardini, A., Gomboc, A., Mottram, C.J., Mundell, C.G., Steele, I.A., Carter, D., Bode, M.F., Smith, R.J., Fraser, S.N., Burgdorf, M.J., Newsam, A.M.: The automatic real-time gamma-ray burst pipeline of the 2 m liverpool telescope. PASP 118, 288–296 (2006). doi: 10.1086/499289. arXiv:astro-ph/0511032 ADSGoogle Scholar
  75. 75.
    Hachisu, I., Kato, M., Saio, H., Nomoto, K.: A single degenerate progenitor model for type Ia supernovae highly exceeding the Chandrasekhar mass limit. ApJ 744, 69 (2012). doi: 10.1088/0004-637X/744/1/69. arXiv:1106.3510 ADSGoogle Scholar
  76. 76.
    Harry, G.M., LIGO Scientific Collaboration: Advanced LIGO: the next generation of gravitational wave detectors. Classical and Quantum Gravity 27(8), 084006 (2010). doi: 10.1088/0264-9381/27/8/084006 ADSMathSciNetGoogle Scholar
  77. 77.
    Hillebrandt, W., Niemeyer, J.C.: Type IA supernova explosion models. ARAA 38, 191–230 (2000). doi: 10.1146/annurev.astro.38.1.191. arXiv:astro-ph/0006305 ADSGoogle Scholar
  78. 78.
    Hinton, J.A., Hofmann, W.: Teraelectronvolt astronomy. ARAA 47, 523–565 (2009). doi: 10.1146/annurev-astro-082708-101816. arXiv:1006.5210 ADSGoogle Scholar
  79. 79.
    Hjorth, J., Sollerman, J., Møller, P., Fynbo, J.P.U., Woosley, S.E., Kouveliotou, C., Tanvir, N.R., Greiner, J., Andersen, M.I., Castro-Tirado, A.J.: A very energetic supernova associated with the γ-ray burst of 29 March 2003. Nature 423, 847–850 (2003). doi: 10.1038/nature01750. arXiv:astro-ph/0306347 ADSGoogle Scholar
  80. 80.
    Höflich, P., Gerardy, C.L., Fesen, R.A., Sakai, S.: Infrared spectra of the subluminous type Ia supernova SN 1999by. ApJ 568, 791–806 (2002). doi: 10.1086/339063. arXiv:astro-ph/0112126 ADSGoogle Scholar
  81. 81.
    Hotokezaka, K., Kyutoku, K., Tanaka, M., Kiuchi, K., Sekiguchi, Y., Shibata, M., Wanajo, S.: Progenitor Models of the Electromagnetic Transient Associated with the Short Gamma Ray Burst 130603B. ApJL 778, L16 (2013). doi: 10.1088/2041-8205/778/1/L16. arXiv:1310.1623 ADSGoogle Scholar
  82. 82.
    Howell, D.A., Sullivan, M., Nugent, P.E., Ellis, R.S., Conley, A.J., Le Borgne, D., Carlberg, R.G., Guy, J., Balam, D., Basa, S., Fouchez, D., Hook, I.M., Hsiao, E.Y., Neill, J.D., Pain, R., Perrett, K.M., Pritchet, C.J.: The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star. Nature 443, 308–311 (2006). doi: 10.1038/nature05103. arXiv:astro-ph/0609616 ADSGoogle Scholar
  83. 83.
    Howell, D.A., Conley, A., Valle, M.D., Nugent, P.E., Perlmutter, S., Marion, G.H., Krisciunas, K., Badenes, C., Mazzali, P., Aldering, G., Antilogus, P., Baron, E., Becker, A., Baltay, C., Benetti, S., Blondin, S., Branch, D., Brown, E.F.: Type Ia supernova science (Unknown Month 2010). arXiv:0903.1086
  84. 84.
    IceCube Collaboration: Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector. Science, 342 (2013). doi: 10.1126/science.1242856. arXiv:1311.5238
  85. 85.
    IceCube Collaboration, Achterberg, A., Ackermann, M., Adams, J., Ahrens, J., Andeen, K., Atlee, D.W., Baccus, J., Bahcall, J.N., Bai, X., et al.: First year performance of the IceCube neutrino telescope. Astropart. Phys. 26, 155–173 (2006). doi: 10.1016/j.astropartphys.2006.06.007. arXiv:astro-ph/0604450 ADSGoogle Scholar
  86. 86.
    Inoue, S., Granot, J., O’Brien, P.T., Asano, K., Bouvier, A., Carosi, A., Connaughton, V., Garczarczyk, M., Gilmore, R., Hinton, J., Inoue, Y., Ioka, K., Kakuwa, J., Markoff, S., Murase, K., Osborne, J.P.: Gamma-ray burst science in the era of the Cherenkov Telescope Array. Astropart. Phys. 43, 252–275 (2013). doi: 10.1016/j.astropartphys.2013.01.004. arXiv:1301.3014 ADSGoogle Scholar
  87. 87.
    Ivezić, ž, Tyson, J.A., Jurić, M., Kubica, J., Connolly, A., Pierfederici, F., Harris, A.W., Bowell, E., LSST Collaboration: IAU Symposium, IAU Symposium. In: Valsecchi, GB, Vokrouhlický, D, Milani, A (eds.) . arXiv:astro-ph/0701506, vol. 236, pp. 353–362 (2007), doi: 10.1017/S1743921307003420
  88. 88.
    Ivezić, ž, Tyson, J.A., Jurić, M., Kubica, J., Connolly, A., Pierfederici, F., Harris, A.W., Bowell, E., LSST Collaboration: IAU Symposium, IAU Symposium. In: Valsecchi, GB, Vokrouhlický, D, Milani, A (eds.) . arXiv:astro-ph/0701506, vol. 236, pp. 353–362 (2007), doi: 10.1017/S1743921307003420
  89. 89.
    Ivezic, Z., Tyson, J.A., Acosta, E., Allsman, R., Anderson, S.F., Andrew, J., Angel, R., Axelrod, T., Barr, J.D., Becker, A.C., Becla, J., Beldica, C., Blandford, R.D., Bloom, J.S., Borne, K., Brandt, W.N.: LSST: from Science Drivers to Reference Design and Anticipated Data Products. arXiv:0805.2366 (2008)
  90. 90.
    Karle, A., Ahrens, J., Bahcall, J.N., Bai, X., Becka, T., Becker, K.H., Besson, D.Z., Berley, D., Bernardini, E., Bertrand, D., Binon, F., Biron, A., Böser, S., Bohm, C., Botner, O., Bouhali, O.: IceCube - the next generation neutrino telescope at the South Pole. Nucl. Phys. B Proceedings Supplements 118, 388–395 (2003). doi: 10.1016/S0920-5632(03)01337-9. arXiv:astro-ph/0209556 ADSGoogle Scholar
  91. 91.
    Kasen, D., Nugent, P., Thomas, R.C., Wang, L.: Could there be a hole in type Ia supernovae? ApJ 610, 876–887 (2004). doi: 10.1086/421699. arXiv:astro-ph/0311009 ADSGoogle Scholar
  92. 92.
    Kasen, D., Röpke, F.K., Woosley, S.E.: The diversity of type Ia supernovae from broken symmetries. Nature 460, 869–872 (2009). doi: 10.1038/nature08256. arXiv:0907.0708 ADSGoogle Scholar
  93. 93.
    Kasen, D., Badnell, N.R., Barnes, J.: Opacities and spectra of the r-process ejecta from neutron star mergers. ApJ 774, 25 (2013). doi: 10.1088/0004-637X/774/1/25. arXiv:1303.5788 ADSGoogle Scholar
  94. 94.
    Kasliwal, M.M., Kulkarni, S.R., Gal-Yam, A., Yaron, O., Quimby, R.M., Ofek, E.O., Nugent, P., Poznanski, D., Jacobsen, J., Sternberg, A., Arcavi I., Howell, D.A., Sullivan, M., Rich, D.J., Burke, P.F.: Rapidly Decaying Supernova 2010X: A Candidate ”.Ia” Explosion. ApJL 723, L98–L102 (2010). doi: 10.1088/2041-8205/723/1/L98. arXiv:1009.0960 ADSGoogle Scholar
  95. 95.
    Katz, U.F.: KM3NeT: Towards a km 3 Mediterranean neutrino telescope. Nucl. Instrum. Meth. Phys. Res. A 567, 457–461 (2006). doi: 10.1016/j.nima.2006.05.235. arXiv:astro-ph/0606068 ADSGoogle Scholar
  96. 96.
    Katz, U.F., Spiering C.: High-energy neutrino astrophysics: Status and perspectives. Prog. Part. Nucl. Phys. 67, 651–704 (2012). doi: 10.1016/j.ppnp.2011.12.001. arXiv:1111.0507 ADSGoogle Scholar
  97. 97.
    Klebesadel, R.W., Strong, I.B., Olson, R.A.: Observations of gamma-ray bursts of cosmic origin. ApJL 182, L85 (1973). doi: 10.1086/181225 ADSGoogle Scholar
  98. 98.
    Knutson, H.A., Charbonneau, D., Noyes, R.W., Brown, T.M., Gilliland, R.L.: Using stellar limb-darkening to refine the properties of HD 209458b. ApJ 655, 564–575 (2007). doi: 10.1086/510111. arXiv:astro-ph/0603542 ADSGoogle Scholar
  99. 99.
    Kobayashi, S., Laguna, P., Phinney, E.S., Mészáros, P.: Gravitational waves and x-ray signals from stellar disruption by a massive black hole. ApJ 615, 855–865 (2004). doi: 10.1086/424684. arXiv:astro-ph/0404173 ADSGoogle Scholar
  100. 100.
    Kushnir, D., Katz, B., Dong, S., Livne, E., Fernáandez R.: Head-on collisions of white dwarfs in triple systems could explain type Ia supernovae. ApJL 778, L37 (2013). doi: 10.1088/2041-8205/778/2/L37. arXiv:1303.1180 ADSGoogle Scholar
  101. 101.
    Lazzarin, M., Marchi, S., Barucci, M.A., Di Martino, M., Barbieri, C.: Visible and near-infrared spectroscopic investigation of near-Earth objects at ESO: first results. Icarus 169, 373–384 (2004). doi: 10.1016/j.icarus.2003.12.023 ADSGoogle Scholar
  102. 102.
    Levan, A.J., Tanvir, N.R., Cenko, S.B., Perley, D.A., Wiersema, K., Bloom, J.S., Fruchter, A.S., Postigo, AdU, O’Brien, P.T., Butler, N., van der Horst, A.J., Leloudas, G., Morgan, A.N., Misra, K., Bower, G.C., Farihi, J., Tunnicliffe, R.L.: An extremely luminous panchromatic outburst from the nucleus of a distant galaxy. Science 333, 199– (2011). doi: 10.1126/science.1207143. arXiv:1104.3356
  103. 103.
    Levan, A.J., Tanvir, N.R., Starling, R.L.C., Wiersema, K., Page, K.L., Perley, D.A., Schulze, S., Wynn, G.A., Chornock, R., Hjorth, J., Cenko, S.B., Fruchter, A.S., O’Brien, P.T., Brown, G.C., Tunnicliffe, R.L., Malesani, D., Jakobsson, P.: A new population of ultra-long duration gamma-ray bursts. ApJ 781, 13 (2014). doi: 10.1088/0004-637X/781/1/13. arXiv:1302.2352 ADSGoogle Scholar
  104. 104.
    LIGO Scientific Collaboration, Virgo Collaboration, Aasi, J., Abadie, J., Abbott, B.P., Abbott, R., Abbott, T.D., Abernathy, M., Accadia, T., Acernese, F., et al.: Prospects for Localization of Gravitational Wave Transients by the Advanced LIGO and Advanced Virgo Observatories (2013). arXiv:1304.0670
  105. 105.
    Littlefair, S.P., Dhillon, V.S., Marsh, T.R., Gänsicke, B.T., Southworth, J., Baraffe, I., Watson, C.A., Copperwheat, C.: On the evolutionary status of short-period cataclysmic variables. MNRAS 388, 1582–1594 (2008). doi:10.1111/j.1365-2966.2008.13539.x. arXiv:0806.1129
  106. 106.
    Loeb, A., Shvartzvald, Y., Maoz, D.: Fast radio bursts may originate from nearby flaring stars. MNRAS (2014). doi: 10.1093/mnrasl/slt177. arXiv:1310.2419
  107. 107.
    Lorimer, D.R., Bailes, M., McLaughlin, M.A., Narkevic, D.J., Crawford, F.: A Bright Millisecond Radio Burst of Extragalactic Origin. Science 318, 777– (2007). doi: 10.1126/science.1147532. arXiv:0709.4301
  108. 108.
    Lowry, S.C., Fitzsimmons, A., Pravec, P., Vokrouhlický, D., Boehnhardt, H., Taylor, P.A., Margot, J.L., Galád, A., Irwin, M., Irwin, J., Kusnirák, P.: Direct Detection of the Asteroidal YORP Effect. Science 316, 272– (2007). doi: 10.1126/science.1139040
  109. 109.
    MacFadyen, A.I., Woosley, S.E. ApJ 524, 262–289 (1999). doi: 10.1086/307790. arXiv:astro-ph/9810274 ADSGoogle Scholar
  110. 110.
    Maoz, D., Mannucci, F., Nelemans, G.: Observational clues to the progenitors of Type-Ia supernovae. arXiv:13120628 (2013)
  111. 111.
    Martin, P., Dubus, G.: Particle acceleration and non-thermal emission during the V407 Cygni nova outburst. A&A 551, A37 (2013). doi: 10.1051/0004-6361/201220289. arXiv:1209.0625 ADSGoogle Scholar
  112. 112.
    Matheson, T., Fan, X., Green, R., McConnachie, A., Newman, J., Olsen, K., Szkody, P., Wood-Vasey, W.M.: Spectroscopy in the Era of LSST. arXiv:1311.2496 (2013)
  113. 113.
    Mattila, S., Lundqvist, P., Sollerman, J., Kozma, C., Baron, E., Fransson, C., Leibundgut, B., Nomoto, K.: Early and late time VLT spectroscopy of SN 2001el - progenitor constraints for a type Ia supernova. A&A 443, 649–662 (2005). doi: 10.1051/0004-6361:20052731. arXiv:astro-ph/0501433 ADSGoogle Scholar
  114. 114.
    Maurer, J.I., Mazzali, P.A., Deng, J., Filippenko, A.V., Hamuy, M., Kirshner, R.P., Matheson, T., Modjaz, M., Pian, E., Stritzinger, M., Taubenberger, S., Valenti, S.: Characteristic velocities of stripped-envelope core-collapse supernova cores. MNRAS 402, 161–172 (2010). doi: 10.1111/j.1365-2966.2009.15905.x. arXiv:0911.3774 ADSGoogle Scholar
  115. 115.
    Mazzali, P.A., Iwamoto, K., Nomoto, K.: A spectroscopic analysis of the energetic type Ic Hypernova SN 1997EF. ApJ 545, 407–419 (2000). doi: 10.1086/317808. arXiv:astro-ph/0007222 ADSGoogle Scholar
  116. 116.
    Mazzali, P.A., Deng, J., Tominaga, N., Maeda, K., Nomoto, K., Matheson, T., Kawabata, K.S., Stanek, K.Z., Garnavich, P.M.: The Type Ic Hypernova SN 2003dh/GRB 030329. ApJL 599, L95–L98 (2003). doi: 10.1086/381259. arXiv:astro-ph/0309555 ADSGoogle Scholar
  117. 117.
    Mazzali, P.A., Benetti, S., Altavilla, G., Blanc, G., Cappellaro, E., Elias-Rosa, N., Garavini, G., Goobar, A., Harutyunyan, A., Kotak, R., Leibundgut, B., Lundqvist, P., Mattila, S., Mendez, J.: High-Velocity Features: A Ubiquitous Property of Type Ia Supernovae. ApJL 623, L37–L40 (2005a). doi: 10.1086/429874. arXiv:astro-ph/0502531 ADSGoogle Scholar
  118. 118.
    Mazzali, P.A., Kawabata, K.S., Maeda, K., Nomoto, K., Filippenko, A.V., Ramirez-Ruiz, E., Benetti, S., Pian, E., Deng, J., Tominaga, N., Ohyama, Y., Iye, M., Foley, R.J., Matheson, T., Wang, L., Gal-Yam, A.: An Asymmetric Energetic Type Ic Supernova Viewed Off-Axis, and a Link to Gamma Ray Bursts. Science 308, 1284–1287 (2005b). doi: 10.1126/science.1111384. arXiv:astro-ph/0505199 ADSGoogle Scholar
  119. 119.
    Mazzali, P.A., Deng, J., Nomoto, K., Sauer, D.N., Pian, E., Tominaga, N., Tanaka, M., Maeda, K., Filippenko, A.V.: A neutron-star-driven X-ray flash associated with supernova SN 2006aj. Nature 442, 1018–1020 (2006). doi: 10.1038/nature05081. arXiv:astro-ph/0603567 ADSGoogle Scholar
  120. 120.
    Mazzali, P.A., Röpke, F.K., Benetti, S., Hillebrandt, W.: A common explosion mechanism for type Ia supernovae. Science 315, 825(2007). doi: 10.1126/science.1136259. arXiv:astro-ph/0702351 ADSGoogle Scholar
  121. 121.
    Mazzali, P.A., Valenti, S., Valle, M.D., Chincarini, G., Sauer, D.N., Benetti, S., Pian, E., Piran, T., D’Elia, V., Elias-Rosa, N., Margutti, R., Pasotti, F., Antonelli, L.A., Bufano, F., Campana, S.: The metamorphosis of supernova SN 2008D/XRF 080109: A link between supernovae and GRBs/Hypernovae. Science 321, 1185(2008). doi: 10.1126/science.1158088. arXiv:0807.1695 ADSGoogle Scholar
  122. 122.
    Mazzali, P.A., Walker, E.S., Pian, E., Tanaka, M., Corsi, A., Hattori, T., Gal-Yam, A.: The very energetic, broad-lined Type Ic supernova 2010ah (PTF10bzf) in the context of GRB/SNe. MNRAS 432, 2463–2473 (2013). doi: 10.1093/mnras/stt605. arXiv:1305.1801 ADSGoogle Scholar
  123. 123.
    Metzger, B.D., Berger, E.: What is the most promising electromagnetic counterpart of a neutron star binary merger? ApJ 746, 48 (2012). doi: 10.1088/0004-637X/746/1/48. arXiv:1108.6056 ADSGoogle Scholar
  124. 124.
    Metzger, B.D., Martínez-Pinedo, G., Darbha, S., Quataert, E., Arcones, A., Kasen, D., Thomas, R., Nugent, P., Panov, I.V., Zinner, N.T.: Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. MNRAS 406, 2650–2662 (2010). doi: 10.1111/j.1365-2966.2010.16864.x. arXiv:1001.5029 ADSGoogle Scholar
  125. 125.
    Modjaz, M., Li, W., Butler, N., Chornock, R., Perley, D., Blondin, S., Bloom, J.S., Filippenko, A.V., Kirshner, R.P., Kocevski, D., Poznanski, D., Hicken, M., Foley, R.J., Stringfellow, G.S., Berlind, P., Navascues, DB y, Blake, C.H.: From Shock Breakout to Peak and Beyond: Extensive Panchromatic Observations of the Type Ib Supernova 2008D Associated with Swift X-ray Transient 080109. ApJ 702, 226–248 (2009). doi: 10.1088/0004-637X/702/1/226. arXiv:0805.2201 ADSGoogle Scholar
  126. 126.
    Monfardini, A., Kobayashi, S., Guidorzi, C., Carter, D., Mundell, C.G., Bersier, D.F., Gomboc, A., Melandri, A., Mottram, C.J., Smith, R.J., Steele, I.A.: High-Quality Early-Time Light Curves of GRB 060206: Implications for Gamma-Ray Burst Environments and Energetics. ApJ 648, 1125–1131 (2006). doi: 10.1086/506170. arXiv:astro-ph/0603181 ADSGoogle Scholar
  127. 127.
    Mundell, C.G., Steele, I.A., Smith, R.J., Kobayashi, S., Melandri, A., Guidorzi, C., Gomboc, A., Mottram, C.J., Clarke, D., Monfardini, A., Carter, D., Bersier, D.: Early Optical Polarization of a Gamma-Ray Burst Afterglow. Science 315, 1822– (2007). doi: 10.1126/science.1138484. arXiv:astro-ph/astro-ph/0703654
  128. 128.
    Mundell, C.G., Kopač, D., Arnold, D.M., Steele, I.A., Gomboc, A., Kobayashi, S., Harrison, R.M., Smith, R.J., Guidorzi, C., Virgili, F.J., Melandri, A., Japelj, J.: Highly polarized light from stable ordered magnetic fields in GRB120308A. Nature 504, 119–121 (2013). doi: 10.1038/nature12814 ADSGoogle Scholar
  129. 129.
    Nakar, E., Piran, T.: Detectable radio flares following gravitational waves from mergers of binary neutron stars. Nature 478, 82–84 (2011). doi: 10.1038/nature10365. arXiv:1102.1020 ADSGoogle Scholar
  130. 130.
    Ngeow, C.C., Konidaris, N., Quimby, R., Ritter, A., Rudy, A.R., Lin, E., Ben-Ami, S.: The SED Machine: A Spectrograph to Efficiently Classify Transient Events Discovered by PTF. In: Zhang, CM, Belloni, T, Méndez, M, Zhang, SN (eds.) IAU Symposium, IAU Symposium. arXiv:1209.4699, vol. 290, pp. 281–282 (2013), doi: 10.1017/S1743921312020017
  131. 131.
    Nicholl, M., Smartt, S.J., Jerkstrand, A., Inserra, C., McCrum, M., Kotak, R., Fraser, M., Wright, D., Chen, T.W., Smith, K., Young, D.R., Sim, S.A., Valenti, S., Howell, D.A., Bresolin, F., Kudritzki, R.P.: Slowly fading super-luminous supernovae that are not pair-instability explosions. Nature 502, 346–349 (2013). doi: 10.1038/nature12569. arXiv:1310.4446 ADSGoogle Scholar
  132. 132.
    Nissanke S., Kasliwal M., Georgieva A.: Identifying Elusive Electromagnetic Counterparts to Gravitational Wave Mergers: An End-to-end Simulation. ApJ 767, 124 (2013). doi: 10.1088/0004-637X/767/2/124. arXiv:1210.6362
  133. 133.
    Nugent, P.E., Sullivan, M., Cenko, S.B., Thomas, R.C., Kasen, D., Howell, D.A., Bersier, D., Bloom, J.S., Kulkarni, S.R., Kandrashoff, M.T., Filippenko, A.V., Silverman, J.M., Marcy, G.W., Howard, A.W.: Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star. Nature 480, 344–347 (2011). doi: 10.1038/nature10644. arXiv:1110.6201 ADSGoogle Scholar
  134. 134.
    Ofek, E.O., Rabinak, I., Neill, J.D., Arcavi, I., Cenko, S.B., Waxman, E., Kulkarni, S.R., Gal-Yam, A., Nugent, P.E., Bildsten, L., Bloom, J.S., Filippenko, A.V., Forster, K., Howell, D.A., Jacobsen, J., Kasliwal, M.M.: Supernova PTF 09UJ: A possible shock breakout from a dense circumstellar wind. ApJ 724, 1396–1401 (2010). doi: 10.1088/0004-637X/724/2/1396. arXiv:1009.5378 ADSGoogle Scholar
  135. 135.
    Parrent, J.T., Thomas, R.C., Fesen, R.A., Marion, G.H., Challis, P., Garnavich, P.M., Vinkò, J., Wheeler, J.C.: A study of carbon features in type ia supernova spectra. ApJ 732, 30 (2011). doi: 10.1088/0004-637X/732/1/30. arXiv:1103.1671 ADSGoogle Scholar
  136. 136.
    Pastorello, A., Smartt, S.J., Mattila, S., Eldridge, J.J., Young, D., Itagaki, K., Yamaoka, H., Navasardyan, H., Valenti, S., Patat, F., Agnoletto, I., Augusteijn, T.: A giant outburst two years before the core-collapse of a massive star. Nature 447, 829–832 (2007). doi: 10.1038/nature05825. arXiv:astro-ph/0703663
  137. 137.
    Paul, J., Wei, J., Basa, S., Zhang, S.N.: Comptes Rendus Physique 12, 298–308 (2011). doi: 10.1016/j.crhy.2011.01.009. arXiv:1104.0606 ADSGoogle Scholar
  138. 138.
    Pepe, F.A., Cristiani, S., Lopez, R.R., Santos, N.C., Amorim, A., Avila, G., Benz, W., Bonifacio, P., Cabral, A., Carvas, P., Cirami, R., Coelho, J., Comari, M., Coretti, I., de Caprio, V.: ESPRESSO: the Echelle spectrograph for rocky exoplanets and stable spectroscopic observations. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7735 (2010), doi: 10.1117/12.857122
  139. 139.
    Perets, H.B., Gal-Yam, A., Mazzali, P.A., Arnett, D., Kagan, D., Filippenko, A.V., Li, W., Arcavi, I., Cenko, S.B., Fox, D.B., Leonard, D.C., Moon, D.S., Sand, D.J., Soderberg, A.M., Anderson, J.P.: A faint type of supernova from a white dwarf with a helium-rich companion. Nature 465, 322–325 (2010). doi: 10.1038/nature09056. arXiv:0906.2003 ADSGoogle Scholar
  140. 140.
    Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R.A., Nugent, P., Castro, P.G., Deustua, S., Fabbro, S., Goobar, A., Groom, D.E., Hook, I.M., Kim, A.G., Kim, M.Y., Lee, J.C., Nunes, N.J.: Measurements of Omega and Lambda from 42 High-Redshift Supernovae. ApJ 517, 565–586 (1999). doi: 10.1086/307221. arXiv:astro-ph/9812133 ADSGoogle Scholar
  141. 141.
    Perryman, M.A.C., de Boer, K.S., Gilmore, G., Høg, E., Lattanzi, M.G., Lindegren, L., Luri, X., Mignard, F., Pace, O., de Zeeuw, P.T.: GAIA: Composition, formation and evolution of the Galaxy. A&A 369, 339–363 (2001). doi: 10.1051/0004-6361:20010085. arXiv:astro-ph/0101235 ADSGoogle Scholar
  142. 142.
    Petigura, E.A., Howard, A.W., Marcy, G.W.: Prevalence of Earth-size planets orbiting Sun-like stars. Proc. Natl. Acad. Sci. 110, 19,273–19,278 (2013). arXiv:1311.6806 Google Scholar
  143. 143.
    Phillips, M.M.: The absolute magnitudes of Type IA supernovae. ApJL 413, L105—L108 (1993). doi: 10.1086/186970 Google Scholar
  144. 144.
    Phillips, M.M., Lira, P., Suntzeff, N.B., Schommer, R.A., Hamuy, M., Maza, J.: The Reddening-Free Decline Rate Versus Luminosity Relationship for Type IA Supernovae. AJ 118, 1766–1776 (1999). doi: 10.1086/301032. arXiv:astro-ph/9907052 ADSGoogle Scholar
  145. 145.
    Pian, E., Mazzali, P.A., Masetti, N., Ferrero, P., Klose, S., Palazzi, E., Ramirez-Ruiz, E., Woosley, S.E., Kouveliotou, C., Deng, J., Filippenko, A.V., Foley, R.J., Fynbo, J.P.U., Kann, D.A., Li, W., Hjorth, J., Nomoto, K., Patat, F., Sauer, D.N.: An optical supernova associated with the X-ray flash XRF 060218. Nature 442, 1011–1013 (2006). doi: 10.1038/nature05082. arXiv:astro-ph/0603530 ADSGoogle Scholar
  146. 146.
    Piascik, A.S., Steele, I.A., Bates, S.D., Mottram, C.J., Smith, R.J., Barnsley, R.M., Bolton, B.: SPRAT: Spectrograph for the Rapid Acquisition of Transients. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9147, p 8 (2014), doi: 10.1117/12.2055117
  147. 147.
    Podsiadlowski, P., Mazzali, P.A., Nomoto, K., Lazzati, D., Cappellaro, E.: Thrs. ApJL 607, L17–L20 (2004). doi: 10.1086/421347. arXiv:astro-ph/0403399 ADSGoogle Scholar
  148. 148.
    Pollacco, D.L., Skillen, I., Collier, C.A., Christian, D.J., Hellier, C., Irwin, J., Lister, T.A., Street, R.A., West, R.G., Anderson, D.R., Clarkson, W.I., Deeg, H., Enoch, B., Evans, A.: The WASP project and the superWASP cameras. PASP 118, 1407–1418 (2006). doi: 10.1086/508556. arXiv:astro-ph/0608454 ADSGoogle Scholar
  149. 149.
    Pont, F., Knutson, H., Gilliland, R.L., Moutou, C., Charbonneau, D.: Detection of atmospheric haze on an extrasolar planet: the 0.55-1.05 μm transmission spectrum of HD 189733b with the HubbleSpaceTelescope. MNRAS 385, 109–118 (2008). doi: 10.1111/j.1365-2966.2008.12852.x. arXiv:0712.1374 ADSGoogle Scholar
  150. 150.
    Pshirkov, M.S., Postnov, K.A.: Radio precursors to neutron star binary mergings. Ap&SS 330, 13–18 (2010). doi: 10.1007/s10509-010-0395-x. arXiv:1004.5115 ADSGoogle Scholar
  151. 151.
    Racusin, J.L., Karpov, S.V., Sokolowski, M., Granot, J., Wu, X.F., Pal’Shin, V., Covino, S., van der Horst, A.J., Oates, S.R., Schady, P., Smith, R.J., Cummings, J., Starling, R.L.C.: Broadband observations of the naked-eye γ-ray burst GRB080319B. Nature 455, 183–188 (2008). doi: 10.1038/nature07270. arXiv:0805.1557 ADSGoogle Scholar
  152. 152.
    Rau, A., Kulkarni, S.R., Law, N.M., Bloom, J.S., Ciardi, D., Djorgovski, G.S., Fox, D.B., Gal-Yam, A., Grillmair, C.C., Kasliwal, M.M., Nugent, P.E.: Exploring the optical transient sky with the Palomar transient factory. PASP 121, 1334–1351 (2009). doi: 10.1086/605911. arXiv:0906.5355 ADSGoogle Scholar
  153. 153.
    Rauer, H.: The PLATO 2.0 mission. European Planetary Science Congress 2013, held 8-13 September in London, UK, idEPSC2013-707 8:EPSC2013. arXiv:1310.0696 (2013)
  154. 154.
    Renzini, A., Greggio, L., di Serego, A.S., Cappellari, M., Burstein, D., Bertola, F.: An ultraviolet flare at the centre of the elliptical galaxy NGC4552. Nature 378, 39–41 (1995). doi: 10.1038/378039a0 ADSGoogle Scholar
  155. 155.
    Ricker, G.R., Latham, D.W., Vanderspek, R.K., Ennico, K.A., Bakos, G., Brown, T.M., Burgasser, A.J., Charbonneau, D., Clampin, M., Deming, L.D., Doty, J.P., Dunham, E.W., Elliot, J.L.: Transiting Exoplanet Survey Satellite (TESS). In: American Astronomical Society Meeting Abstracts 215, Bulletin of the American Astronomical Society, vol. 42, p 450 (2010)Google Scholar
  156. 156.
    Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P.M., Gilliland, R.L., Hogan, C.J., Jha, S., Kirshner, R.P., Leibundgut, B., Phillips, M.M., Reiss, D., Schmidt, B.P.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. AJ 116, 1009–1038 (1998). doi: 10.1086/300499. arXiv:astro-ph/9805201
  157. 157.
    Röpke, F.K., Hillebrandt, W., Schmidt, W., Niemeyer, J.C., Blinnikov, S.I., Mazzali, P.A.: A three-dimensional deflagration model for type Ia supernovae compared with observations. ApJ 668, 1132–1139 (2007). doi: 10.1086/521347. arXiv:0707.1024 ADSGoogle Scholar
  158. 158.
    Ruiz-Lapuente, P., Comeron, F., Méndez, J., Canal, R., Smartt, S.J., Filippenko, A.V., Kurucz, R.L., Chornock, R., Foley, R.J., Stanishev, V., Ibata, R.: The binary progenitor of Tycho Brahe’s 1572 supernova. Nature 431, 1069–1072 (2004). doi: 10.1038/nature03006. arXiv:astro-ph/0410673 ADSGoogle Scholar
  159. 159.
    Savaglio, S.: GRBs as cosmological probes - cosmic chemical evolution. New J. Phys. 8, 195 (2006). doi: 10.1088/1367-2630/8/9/195. arXiv:astro-ph/0609489 ADSGoogle Scholar
  160. 160.
    Scalzo, R.A., Aldering, G., Antilogus, P., Aragon, C., Bailey, S., Baltay, C., Bongard, S., Buton, C., Childress, M., Chotard, N., Copin, Y., Fakhouri, H.K., Gal-Yam, A., Gangler, E., Hoyer, S., Kasliwal, M.: Nearby supernova factory observations of SN 2007if: First total mass measurement of a super-Chandrasekhar-mass progenitor. ApJ 713, 1073–1094 (2010). doi: 10.1088/0004-637X/713/2/1073. arXiv:1003.2217 ADSGoogle Scholar
  161. 161.
    Schaefer, B.E., Pagnotta, A.: An absence of ex-companion stars in the type Ia supernova remnant SNR 0509-67.5. Nature 481, 164–166 (2012). doi: 10.1038/nature10692 ADSGoogle Scholar
  162. 162.
    Schawinski, K., Justham, S., Wolf, C., Podsiadlowski, P., Sullivan, M., Steenbrugge, K.C., Bell, T., Röser, H.J., Walker, E.S., Astier, P., Balam, D., Balland, C.: Supernova shock breakout from a red supergiant. Science 321, 223–226 (2008). doi: 10.1126/science.1160456. arXiv:0803.3596 ADSGoogle Scholar
  163. 163.
    Sing, D.K., Pont, F., Aigrain, S., Charbonneau, D., Désert, J.M., Gibson, N., Gilliland, R., Hayek, W., Henry, G., Knutson, H., Lecavelier Des Etangs, A., Mazeh, T., Shporer, A.: Hubble space telescope transmission spectroscopy of the exoplanet HD 189733b: high-altitude atmospheric haze in the optical and near-ultraviolet with STIS. MNRAS 416, 1443–1455 (2011). doi: 10.1111/j.1365-2966.2011.19142.x. arXiv:1103.0026 ADSGoogle Scholar
  164. 164.
    Smartt, S.J.: Progenitors of core-collapse supernovae. ARAA 47, 63–106 (2009). doi: 10.1146/annurev-astro-082708-101737. arXiv:0908.0700 ADSGoogle Scholar
  165. 165.
    Smartt, S.J., Eldridge, J.J., Crockett, R.M., Maund, J.R.: The death of massive stars - I. Observational constraints on the progenitors of type II-P supernovae. MNRAS 395, 1409–1437 (2009). doi: 10.1111/j.1365-2966.2009.14506.x. arXiv:0809.0403 ADSGoogle Scholar
  166. 166.
    Smith, N., Li, W., Foley, R.J., Wheeler, J.C., Pooley, D., Chornock, R., Filippenko, A.V., Silverman, J.M., Quimby, R., Bloom, J.S., Hansen, C.: SN 2006gy: discovery of the most luminous supernova ever recorded, powered by the death of an extremely massive star like η carinae. ApJ 666, 1116–1128 (2007). doi: 10.1086/519949. arXiv:astro-ph/0612617 ADSGoogle Scholar
  167. 167.
    Soderberg, A.M., Berger, E., Page, K.L., Schady, P., Parrent, J., Pooley, D., Wang, X.Y., Ofek, E.O., Cucchiara, A., Rau, A., Waxman, E., Simon, J.D.: An extremely luminous X-ray outburst at the birth of a supernova. Nature 453, 469–474 (2008). doi: 10.1038/nature06997. arXiv:0802.1712 ADSGoogle Scholar
  168. 168.
    Somov, B.V.: Fast magnetic reconnection and particle acceleration in the non-equilibrium magnetosphere of a relativistic star. Astronomy Reports 55, 962–977 (2011). doi: 10.1134/S1063772911110102 ADSGoogle Scholar
  169. 169.
    Stanek, K.Z., Matheson, T., Garnavich, P.M., Martini, P., Berlind, P., Caldwell, N., Challis, P., Brown, W.R., Schild, R., Krisciunas, K., Calkins, M.L., Lee, J.C., Hathi, N., Jansen, R.A., Windhorst, R.: Spectroscopic discovery of the supernova 2003dh associated with GRB 030329. ApJL 591, L17–L20 (2003). doi: 10.1086/376976. arXiv:astro-ph/0304173 ADSGoogle Scholar
  170. 170.
    Stappers, B.W., Hessels, J.W.T., Alexov, A., Anderson, K., Coenen, T., Hassall, T., Karastergiou, A., Kondratiev, V.I., Kramer, M., van Leeuwen, J., Mol, J.D., Noutsos, A., Romein, J.W., Weltevrede, P., Fender, R., Wijers, R.A.M.J., Bähren, L.: Observing pulsars and fast transients with LOFAR. A&A 530, A80 (2011). doi: 10.1051/0004-6361/201116681. arXiv:1104.1577 ADSGoogle Scholar
  171. 171.
    Steele, I.A., Smith, R.J., Rees, P.C., Baker, I.P., Bates, S.D., Bode, M.F., Bowman, M.K., Carter, D., Etherton, J., Ford, M.J., Fraser, S.N., Gomboc, A., Lett, R.D.J., Mansfield, A.G., Marchant, J.M.: The Liverpool Telescope: performance and first results. In: Oschmann, J.M. Jr (ed.) Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5489, pp. 679–692 (2004), doi: 10.1117/12.551456
  172. 172.
    Steele, I.A., Bates, S.D., Gibson, N., Keenan, F., Meaburn, J., Mottram, C.J., Pollacco, D., Todd, I.: RISE: a fast-readout imager for exoplanet transit timing. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. arXiv:0809.3351, vol. 7014 (2008), doi: 10.1117/12.787889
  173. 173.
    Steele, I.A., Mundell, C.G., Smith, R.J., Kobayashi, S., Guidorzi, C.: Ten per cent polarized optical emission from GRB090102. Nature 462, 767–769 (2009). doi: 10.1038/nature08590. arXiv:1010.1255 ADSGoogle Scholar
  174. 174.
    Stratta, G., Gendre, B., Atteia, J.L., Boër, M., Coward, D.M., De Pasquale, M., Howell, E., Klotz, A., Oates, S., Piro, L.: The Ultra-long GRB 111209A. II. Prompt to afterglow and afterglow properties. ApJ 779, 66 (2013). doi: 10.1088/0004-637X/779/1/66. arXiv:1306.1699 ADSGoogle Scholar
  175. 175.
    Svirski, G., Nakar, E., Sari, R.: Optical to X-ray supernova light curves following shock breakout through a thick wind. ApJ 759, 108 (2012). doi: 10.1088/0004-637X/759/2/108. arXiv:1202.3437
  176. 176.
    Tanvir, N.R., Levan, A.J., Fruchter, A.S., Hjorth, J., Hounsell, R.A., Wiersema, K., Tunnicliffe, R.L.: A ‘kilonova’ associated with the short-duration γ-ray burst GRB130603B. Nature 500, 547–549 (2013). doi: 10.1038/nature12505. arXiv:1306.4971 ADSGoogle Scholar
  177. 177.
    The LIGO Scientific Collaboration, the Virgo Collaboration, Aasi, J., Abadie, J., Abbott, B.P., Abbott, R., Abbott, T., Abernathy, M.R., Accadia, T., Acernese, F., et al.: First Searches for Optical Counterparts to Gravitational-wave Candidate Events. arXiv:1310.2314 (2013)
  178. 178.
    Thompson, T.A., Prieto, J.L., Stanek, K.Z., Kistler, M.D., Beacom, J.F., Kochanek, C.S.: A new class of luminous transients and a first census of their massive stellar progenitors. ApJ 705, 1364–1384 (2009). doi: 10.1088/0004-637X/705/2/1364. arXiv:0809.0510 ADSGoogle Scholar
  179. 179.
    Thöne, C.C., de Ugarte Postigo, A., Fryer, C.L., Page, K.L., Gorosabel, J., Aloy, M.A., Perley, D.A., Kouveliotou, C., Janka, H.T., Mimica, P., Racusin, J.L., Krimm, H., Cummings, J., Oates, S.R., Holland, S.T.: The unusual γ-ray burst GRB 101225A from a helium star/neutron star merger at redshift 0.33. Nature 480, 72–74 (2011). doi: 10.1038/nature10611. arXiv:1105.3015 ADSGoogle Scholar
  180. 180.
    Thornton, D., Stappers, B., Bailes, M., Barsdell, B., Bates, S., Bhat, N.D.R., Burgay, M., Burke-Spolaor, S., Champion, D.J., Coster, P., D’Amico, N., Jameson, A., Johnston, S., Keith, M., Kramer, M., Levin, L.: A population of fast radio bursts at cosmological distances. Science 341, 53–56 (2013). doi: 10.1126/science.1236789. arXiv:1307.1628 ADSGoogle Scholar
  181. 181.
    Ulmer, A.: Flares from the tidal disruption of stars by massive black holes. ApJ 514, 180–187 (1999). doi: 10.1086/306909 ADSGoogle Scholar
  182. 182.
    Ulrich F Katz for the KM3NeT Collaboration: News from KM3NeT. arXiv:1403.4065 (2014)
  183. 183.
    Urakawa, S., Fujii, M., Hanayama, H., Takahashi, J., Terai, T., Ohshima, O.: Visible spectroscopic observations of a near-earth object, 2012 DA 14. PASJ 65, L9 (2013). doi: 10.1093/pasj/65.4.L9. arXiv:1306.2111 ADSGoogle Scholar
  184. 184.
    Valenti, S., Pastorello, A., Cappellaro, E., Benetti, S., Mazzali, P.A., Manteca, J., Taubenberger, S., Elias-Rosa, N., Ferrando, R., Harutyunyan, A., Hentunen, V.P., Nissinen, M., Pian, E., Turatto, M., Zampieri, L., Smartt, S.J.: A low-energy core-collapse supernova without a hydrogen envelope. Nature 459, 674–677 (2009). doi: 10.1038/nature08023. arXiv:0901.2074 ADSGoogle Scholar
  185. 185.
    van Eerten, H.J., MacFadyen, A.I.: Synthetic off-axis light curves for low-energy gamma-ray bursts. ApJL 733, L37 (2011). doi: 10.1088/2041-8205/733/2/L37. arXiv:1102.4571 ADSGoogle Scholar
  186. 186.
    van Haarlem, M.P., Wise, M.W., Gunst, A.W., Heald, G., McKean, J.P., Hessels, J.W.T., de Bruyn, A.G., Nijboer, R., Swinbank, J., Fallows, R., Brentjens, M., Nelles, A., Beck, R., Falcke, H.: LOFAR: The LOw-Frequency ARray. A&A 556, A2 (2013). doi: 10.1051/0004-6361/201220873. arXiv:1305.3550 ADSGoogle Scholar
  187. 187.
    van Paradijs, J., Groot, P.J., Galama, T., Kouveliotou, C., Strom, R.G., Telting, J., Rutten, R.G.M., Fishman, G.J., Meegan, C.A., Pettini, M., Tanvir, N.: Transient optical emission from the error box of the γ-ray burst of 28 February 1997. Nature 386, 686–689 (1997). doi: 10.1038/386686a0 ADSGoogle Scholar
  188. 188.
    Virgili, F.J., Mundell, C.G., Pal’shin, V., Guidorzi, C., Margutti, R., Melandri, A., Harrison, R., Kobayashi, S., Chornock, R., Henden, A., Updike, A.C.: GRB 091024A and the nature of ultra-long gamma-ray bursts. ApJ 778, 54 (2013). doi: 10.1088/0004-637X/778/1/54. arXiv:1310.0313 ADSGoogle Scholar
  189. 189.
    Wang, B., Han, Z.: Progenitors of type Ia supernovae. NewAR 56, 122–141 (2012). doi: 10.1016/j.newar.2012.04.001. arXiv:1204.1155 ADSGoogle Scholar
  190. 190.
    Wheatley, P.J., Pollacco, D.L., Queloz, D., Rauer, H., Watson, C.A., West, R.G., Chazelas, B., Louden, T.M., Walker, S., Bannister, N., Bento, J., Burleigh, M., Cabrera, J., Eigmüller, P.: In: European Physical Journal Web of Conferences, European Physical Journal Web of Conferences. arXiv:1302.6592, vol. 47, p 13002, The Next Generation Transit Survey (NGTS) (2013), doi: 10.1051/epjconf/20134713002
  191. 191.
    White, D.J., Daw, E.J., Dhillon, V.S.: A list of galaxies for gravitational wave searches. Class. Quantum Gravity 28(8), 085016 (2011). doi: 10.1088/0264-9381/28/8/085016. arXiv:1103.0695 ADSMathSciNetGoogle Scholar
  192. 192.
    Woosley, S.E., Langer, N., Weaver, T.A.: The evolution of massive stars including mass loss - Presupernova models and explosion. ApJ 411, 823–839 (1993). doi: 10.1086/172886 ADSGoogle Scholar
  193. 193.
    Wyrzykowski, L., Hodgkin, S., Blogorodnova, N., Koposov S., Burgon R.: Photometric Science Alerts from Gaia. arXiv:1210.5007(2012)
  194. 194.
    Zauderer, B.A., Berger, E., Soderberg, A.M., Loeb, A., Narayan, R., Frail, D.A., Petitpas, G.R., Brunthaler, A., Chornock, R., Carpenter, J.M.: Birth of a relativistic outflow in the unusual γ-ray transient Swift J164449.3 + 573451. Nature 476, 425–428 (2011). doi: 10.1038/nature10366. arXiv:1106.3568 ADSGoogle Scholar
  195. 195.
    Zhang, B.B., Zhang, B., Murase, K., Connaughton, V., Briggs, M.S.: How long does a burst burst?. ApJ 787, 66 (2014). doi: 10.1088/0004-637X/787/1/66. arXiv:1310.2540 ADSGoogle Scholar
  196. 196.
    Zwitter, T.: Observational tests of the GAIA expected harvest on eclipsing binaries. In: Munari, U. (ed.) GAIA Spectroscopy: Science and Technology, Astronomical Society of the Pacific Conference Series. arXiv:astro-ph/0301213, vol. 298, p 329 (2003)

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • C. M. Copperwheat
    • 1
  • I. A. Steele
    • 1
  • R. M. Barnsley
    • 1
  • S. D. Bates
    • 1
  • D. Bersier
    • 1
  • M. F. Bode
    • 1
  • D. Carter
    • 1
  • N. R. Clay
    • 1
  • C. A. Collins
    • 1
  • M. J. Darnley
    • 1
  • C. J. Davis
    • 1
  • C. M. Gutierrez
    • 2
    • 3
  • D. J. Harman
    • 1
  • P. A. James
    • 1
  • J. H. Knapen
    • 2
    • 3
  • S. Kobayashi
    • 1
  • J. M. Marchant
    • 1
  • P. A. Mazzali
    • 1
  • C. J. Mottram
    • 1
  • C. G. Mundell
    • 1
  • A. Newsam
    • 1
  • A. Oscoz
    • 2
    • 3
  • E. Palle
    • 2
    • 3
  • A. Piascik
    • 1
  • R. Rebolo
    • 2
    • 3
  • R. J. Smith
    • 1
  1. 1.Astrophysics Research InstituteLiverpool John Moores UniversityLiverpoolUK
  2. 2.Instituto de Astrofísica de CanariasLa LagunaSpain
  3. 3.Departamento de AstrofísicaUniversidad de La LagunaLa LagunaSpain

Personalised recommendations