Advertisement

Experimental Astronomy

, Volume 39, Issue 2, pp 167–206 | Cite as

Design of a dual species atom interferometer for space

  • Thilo Schuldt
  • Christian Schubert
  • Markus Krutzik
  • Lluis Gesa Bote
  • Naceur Gaaloul
  • Jonas Hartwig
  • Holger Ahlers
  • Waldemar Herr
  • Katerine Posso-Trujillo
  • Jan Rudolph
  • Stephan Seidel
  • Thijs Wendrich
  • Wolfgang Ertmer
  • Sven Herrmann
  • André Kubelka-Lange
  • Alexander Milke
  • Benny Rievers
  • Emanuele Rocco
  • Andrew Hinton
  • Kai Bongs
  • Markus Oswald
  • Matthias Franz
  • Matthias Hauth
  • Achim Peters
  • Ahmad Bawamia
  • Andreas Wicht
  • Baptiste Battelier
  • Andrea Bertoldi
  • Philippe Bouyer
  • Arnaud Landragin
  • Didier Massonnet
  • Thomas Lévèque
  • Andre Wenzlawski
  • Ortwin Hellmig
  • Patrick Windpassinger
  • Klaus Sengstock
  • Wolf von Klitzing
  • Chris Chaloner
  • David Summers
  • Philip Ireland
  • Ignacio Mateos
  • Carlos F. Sopuerta
  • Fiodor Sorrentino
  • Guglielmo M. Tino
  • Michael Williams
  • Christian Trenkel
  • Domenico Gerardi
  • Michael Chwalla
  • Johannes Burkhardt
  • Ulrich Johann
  • Astrid Heske
  • Eric Wille
  • Martin Gehler
  • Luigi Cacciapuoti
  • Norman Gürlebeck
  • Claus Braxmaier
  • Ernst Rasel
Original Article

Abstract

Atom interferometers have a multitude of proposed applications in space including precise measurements of the Earth’s gravitational field, in navigation & ranging, and in fundamental physics such as tests of the weak equivalence principle (WEP) and gravitational wave detection. While atom interferometers are realized routinely in ground-based laboratories, current efforts aim at the development of a space compatible design optimized with respect to dimensions, weight, power consumption, mechanical robustness and radiation hardness. In this paper, we present a design of a high-sensitivity differential dual species 85Rb/87Rb atom interferometer for space, including physics package, laser system, electronics and software. The physics package comprises the atom source consisting of dispensers and a 2D magneto-optical trap (MOT), the science chamber with a 3D-MOT, a magnetic trap based on an atom chip and an optical dipole trap (ODT) used for Bose-Einstein condensate (BEC) creation and interferometry, the detection unit, the vacuum system for 10−11 mbar ultra-high vacuum generation, and the high-suppression factor magnetic shielding as well as the thermal control system. The laser system is based on a hybrid approach using fiber-based telecom components and high-power laser diode technology and includes all laser sources for 2D-MOT, 3D-MOT, ODT, interferometry and detection. Manipulation and switching of the laser beams is carried out on an optical bench using Zerodur bonding technology. The instrument consists of 9 units with an overall mass of 221 kg, an average power consumption of 608 W (814 W peak), and a volume of 470 liters which would well fit on a satellite to be launched with a Soyuz rocket, as system studies have shown.

Keywords

Atom interferometer Space technology Equivalence principle test Bose-Einstein condensate 

Notes

Acknowledgments

This work was supported by the German space agency Deutsches Zentrum für Luft- und Raumfahrt (DLR) with funds provided by the Federal Ministry of Economics and Technology under grant numbers 50 OY 1302, 50 OY 1303, and 50 OY 1304, the German Research Foundation (DFG) by funding the Cluster of Excellence “Centre for Quantum Engineering and Space-Time Research (QUEST)”, the French Space Agency Centre National d'Etudes Spatiales, and the European Space Agency (ESA). Lluis Gesa, Ignacio Mateos and Carlos F. Sopuerta acknowledge support from Grants AYA-2010-15709 (MICINN), 2009-SGR-935 (AGAUR) and ESP2013-47637-P (MINECO). Kai Bongs acknowledges support from UKSA for the UK contribution. Baptiste Battelier, Andrea Bertoldi and Philippe Bouyer thank the “Agence Nationale pour la Recherche” for support within the MINIATOM project (ANR-09-BLAN-0026). Wolf von Klitzing acknowledges support from the Future and Emerging Technologies (FET) programme of the EU (MatterWave, FP7-ICT-601180).

References

  1. 1.
    Gauguet, A., et al.: Characterization and limits of a cold-atom Sagnac interferometer. Phys. Rev. A 80, 063604 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    Müller, T., et al.: A compact atom interferometer gyroscope based on laser-cooled rubidium. Eur. Phys. J. D 53, 273–281 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Stockton, J.K., et al.: Absolute geodetic rotation measurement using atom interferometry. Phys. Rev. Lett. 107, 133001 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Tackmann, G., et al.: Self-alignment of a compact large-area atomic Sagnac interferometer. New. J. Phys. 14, 015002 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Canuel, B., et al.: Six-axis inertial sensor using cold-atom interferometry. Phys. Rev. Lett. 97, 010402 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Peters, A., et al.: Measurement of gravitational acceleration by dropping atoms. Nature 400, 849 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Louchet-Chauvet, A., et al.: The influence of transverse motion within an atomic gravimeter. New. J. Phys. 13, 065025 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    McGuirk, J.M., et al.: Sensitive absolute-gravity gradiometry using atom interferometry. Phys. Rev. A 65, 033608 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Bonnin, A., et al.: Simultaneous dual-species matter-wave accelerometer. Phys. Rev. A 88, 043615 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Graham, P.W., et al.: A New method for gravitational wave detection with atomic sensors. Phys. Rev. Lett. 110, 171102 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Hogan, J.M., et al.: An atomic gravitational wave interferometric sensor in Low earth orbit (AGIS-LEO). Gen. Relativ. Gravit. 43, 1953–2009 (2011)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Drinkwater, M. R., et al.: GOCE: ESA’s first earth explorer core mission. In: Beutler, G. B. Drinkwater, M. Rummel, R. Steiger, R. (Eds.), Earth Gravity Field from Space - from Sensors to Earth Sciences. In the Space Sciences Series of ISSI, Vol. 18, 419–432, Kluwer Academic Publishers, Dordrecht, Netherlands, ISBN: 1-4020-1408-2 (2003)Google Scholar
  13. 13.
    Reigber, C. et al.: Earth gravity field and seasonal variability from CHAMP. In: Reigber, C. Lühr,H. Wickert, J. (Edss) Earth Observation with CHAMP – Results from Three Years in Orbit, Springer, Berlin, Heidelberg, New York, pp 25–30Google Scholar
  14. 14.
    Tapley, B. D. et al.: The gravity recovery and climate experiment: mission overview and early results, doi: 10.1029/2004GL019779
  15. 15.
    Kohel, J. M. et al.: Quantum gravity gradiometer development for space, proc. of the sixth annual NASA science technology conference, ESTC (2006)Google Scholar
  16. 16.
    Carraz, O. et al., spaceborne gravity gradiometer concept based on cold atom interferometers for measuring earth’s gravity field, arXiv:1406.0765 (2014)Google Scholar
  17. 17.
    Dubois, J.-B. et al.: Microscope, a femto-g accelerometry mission: technologies and mission overview, Proceedings of the 4S Symposium: Small Satellite Systems and Services, Chia Laguna Sardinia, Italy, Sept. 25–29, 2006, ESA SP-618Google Scholar
  18. 18.
    STE-QUEST team: STE-QUEST Assessment Study Report (Yellow Book), ESA, http://sci.esa.int/ste-quest/53445-ste-quest-yellow-book (2013). Accessed 22 September 2014
  19. 19.
    Aguilera, D., et al.: STE-QUEST - test of the universality of free fall using cold atom interferometry. Class. Quantum. Grav. 31, 115010 (2014)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Hechenblaikner, G. et al.: STE-QUEST mission and system design. overview after completion of Phase-A, Exp. Astron., 2014, doi: 10.1007/s10686-014-9373-6
  21. 21.
    Tino, G.M., et al.: Precision gravity tests with atom interferometry in space. Nucl. Physics B (Proc. Suppl.) 243–244, 203–217 (2013)CrossRefGoogle Scholar
  22. 22.
    Abadie, J., et al.: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Phys. Rev. D 81, 102001 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Danzmann, K. et al.: The gravitational universe, eLISA white paperGoogle Scholar
  24. 24.
    Schubert, C. et al.: Differential atom interferometry with 87Rb and 85Rb for testing the UFF in STE-QUEST, Preprint: arXiv:1312.5963v1 (2013)Google Scholar
  25. 25.
    Fray, S., et al.: Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle. Phys. Rev. Lett. 93, 240404 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    Biedermann, G.W., et al.: Low-noise simultaneous fluorescence detection of two atomic states. Opt. Lett. 34, 347 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Sorrentino, F., et al.: A compact atom interferometer for future space missions, microgravity. Sci. Technol 22(4), 551–561 (2010)MathSciNetGoogle Scholar
  28. 28.
    Sorrentino, F. et al.: The Space Atom Interferometer project: status and prospects, J. Physics. Conf. Series 327, 012050 (2011)Google Scholar
  29. 29.
    van Zoest, T., et al.: Bose-einstein condensation in microgravity. Science 328, 1540 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Rudolph, J., et al.: Degenerate quantum gases in microgravity. Micrograv. Sci. Technol. 23, 287 (2011)CrossRefGoogle Scholar
  31. 31.
    Nyman, R.A. et al.: I.C.E.: A transportable atomic inertial sensor for test in microgravity, Appl. Phys. B. 84, 673, (2006)Google Scholar
  32. 32.
    Geiger, R., et al.: Detecting inertial effects with airborne matter-wave interferometry. Nat. Comm. 2, 474 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    Müntinga, H., et al.: Interferometry with Bose-Einstein condensates in microgravity. Phys. Rev. Lett. 110, 093602 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    Dieckmann, K., et al.: Two-dimensional magneto-optical trap as a source of slow atoms. Phys. Rev. A 58(5), 3891 (1998)ADSCrossRefGoogle Scholar
  35. 35.
  36. 36.
    Laurent, P., et al.: Design of the cold atom PHARAO space clock and initial test results. Appl. Phys. B 84, 683 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    Herr, W.: Eine kompakte Quelle quantenentarteter Gase hohen Flusses für die Atominterferometrie unter Schwerelosigkeit, PhD-thesis at Leibniz Universität Hannover (2013)Google Scholar
  38. 38.
    Clément, J.-F. et al.: All-optical runaway evaporation to bose-einstein condensation. Phys. Rev. Lett. 79, 061406 (R) (2009)Google Scholar
  39. 39.
    Altin, P.A., et al.: 85Rb tunable-interaction Bose–einstein condensate machine. Rev. Sci. Instrum. 81, 063103 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    Lévèque, T., et al.: Enhancing the area of a Raman atom interferometer using a versatile double-diffraction technique. Phys. Rev. Lett. 103, 080405 (2009)CrossRefGoogle Scholar
  41. 41.
    Website: www.zygo.com – optical mirrors
  42. 42.
    Website: www.cedrat-technologies.com – DTT35XS: A new compact piezo tilt mechanism with 3° of freedom., R. Le Letty et al.: Miniature piezo mechanisms for optical and space applications, ACTUATOR 2004, 9th International Conference on New Actuators, 14 – 16 June 2004, Bremen, GermanyGoogle Scholar
  43. 43.
    Rocco, E. et al.: Atom shot noise detection for atom interferometry, in preparationGoogle Scholar
  44. 44.
    Milke, A., et al.: Atom interferometry in space: thermal management and magnetic shielding. Rev. Sci. Instrum. 85, 083105 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    Mateos, I., et al.: Temperature coefficient improvement for low noise magnetic measurements in LISA. J. Phys. Conf. Ser 363, 012051 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    Mateos, I., et al.: Magnetic back action effect of magnetic sensors for eLISA/NGO. ASP Conf Ser. 467, 341 (2013)ADSGoogle Scholar
  47. 47.
    Website: www.ansys.com – Official website of ANSYS, Inc.
  48. 48.
    Website: www.techapps.com – Producer of space qualified carbon fiber heat straps. Technol Appl. Inc.
  49. 49.
    Lévèque, T., et al.: A laser setup for rubidium cooling dedicated to space applications. Appl. Phys. B 116, 997 (2014)CrossRefGoogle Scholar
  50. 50.
    Luvsandamdin, E., et al.: Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space. Appl. Phys. B. 111, 255–260 (2013)ADSCrossRefGoogle Scholar
  51. 51.
    Luvsandamdin, E., et al.: Micro-integrated extended cavity diode lasers for precision potassium spectroscopy in space. Opt. Express 22(7), 7790–7798 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    Kuhn, C. C. N. et al.: A Bose-condensed, simultaneous dual species Mach-Zehnder atom interferometer, arXiv:1401.5827 (2014)Google Scholar
  53. 53.
    Duncker, H., et al.: Ultrastable, Zerodur based optical benches for quantum gas experiments. Appl. Opt. 53(20), 4468–4474 (2014)ADSCrossRefGoogle Scholar
  54. 54.
  55. 55.
  56. 56.
    Nyman, R.A., et al.: I.C.E.: a transportable atomic inertial sensor for test in microgravity. Appl. Phys. B 84, 673 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Thilo Schuldt
    • 1
  • Christian Schubert
    • 2
  • Markus Krutzik
    • 3
  • Lluis Gesa Bote
    • 4
  • Naceur Gaaloul
    • 2
  • Jonas Hartwig
    • 2
  • Holger Ahlers
    • 2
  • Waldemar Herr
    • 2
  • Katerine Posso-Trujillo
    • 2
  • Jan Rudolph
    • 2
  • Stephan Seidel
    • 2
  • Thijs Wendrich
    • 2
  • Wolfgang Ertmer
    • 2
  • Sven Herrmann
    • 5
  • André Kubelka-Lange
    • 5
  • Alexander Milke
    • 5
  • Benny Rievers
    • 5
  • Emanuele Rocco
    • 6
  • Andrew Hinton
    • 6
  • Kai Bongs
    • 6
  • Markus Oswald
    • 7
  • Matthias Franz
    • 7
  • Matthias Hauth
    • 3
  • Achim Peters
    • 3
  • Ahmad Bawamia
    • 8
  • Andreas Wicht
    • 8
  • Baptiste Battelier
    • 9
  • Andrea Bertoldi
    • 9
  • Philippe Bouyer
    • 9
  • Arnaud Landragin
    • 10
  • Didier Massonnet
    • 11
  • Thomas Lévèque
    • 11
  • Andre Wenzlawski
    • 12
  • Ortwin Hellmig
    • 12
  • Patrick Windpassinger
    • 12
    • 19
  • Klaus Sengstock
    • 12
  • Wolf von Klitzing
    • 13
  • Chris Chaloner
    • 14
    • 20
  • David Summers
    • 14
  • Philip Ireland
    • 14
  • Ignacio Mateos
    • 4
  • Carlos F. Sopuerta
    • 4
  • Fiodor Sorrentino
    • 15
  • Guglielmo M. Tino
    • 15
  • Michael Williams
    • 16
  • Christian Trenkel
    • 16
  • Domenico Gerardi
    • 17
  • Michael Chwalla
    • 17
  • Johannes Burkhardt
    • 17
  • Ulrich Johann
    • 17
  • Astrid Heske
    • 18
  • Eric Wille
    • 18
  • Martin Gehler
    • 18
  • Luigi Cacciapuoti
    • 18
  • Norman Gürlebeck
    • 5
  • Claus Braxmaier
    • 1
    • 5
  • Ernst Rasel
    • 2
  1. 1.Institute of Space SystemsGerman Aerospace Center (DLR)BremenGermany
  2. 2.Institut für QuantenoptikLeibniz Universität HannoverHannoverGermany
  3. 3.Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany
  4. 4.Institut de Ciències de l’Espai (CSIC-IEEC)Campus UAB, Facultat de CiènciesBellaterraSpain
  5. 5.Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM)Universität BremenBremenGermany
  6. 6.School of Physics and AstronomyUniversity of BirminghamBirminghamUK
  7. 7.Institut für Optische SystemeUniversity of Applied Sciences Konstanz (HTWG)KonstanzGermany
  8. 8.Ferdinand-Braun-Institut, Leibniz-Institut für HöchstfrequenztechnikBerlinGermany
  9. 9.Laboratoire PhotoniqueNumérique et Nanosciences-LP2N Université Bordeaux-IOGS-CNRS: UMR 5298TalenceFrance
  10. 10.LNE-SYRTE, Observatoire de Paris, CNRS and UPMCParisFrance
  11. 11.CNES - Centre National d’Études SpatialesToulouseFrance
  12. 12.Institut für LaserphysikUniversität HamburgHamburgGermany
  13. 13.Institute of Electronic Structure and LaserFoundation for Research and Technology - HellasHeraklionGreece
  14. 14.SEA House, Bristol Business ParkBristolUK
  15. 15.Dipartimento di Fisica e Astronomia and LENSUniversità di Firenze - INFNSesto Fiorentino (Firenze)Italy
  16. 16.Astrium LtdStevenageUK
  17. 17.Astrium GmbH - SatellitesImmenstaadGermany
  18. 18.ESA - European Space Agency, ESTECNoordwijkNetherlands
  19. 19.Johannes-Gutenberg-University MainzMainzGermany
  20. 20.Trym Systems LtdBristolUK

Personalised recommendations