Advertisement

Experimental Astronomy

, Volume 39, Issue 1, pp 1–10 | Cite as

Kolmogorov-Smirnov like test for time-frequency Fourier spectrogram analysis in LISA Pathfinder

  • Luigi FerraioliEmail author
  • Michele Armano
  • Heather Audley
  • Giuseppe Congedo
  • Ingo Diepholz
  • Ferran Gibert
  • Martin Hewitson
  • Mauro Hueller
  • Nikolaos Karnesis
  • Natalia Korsakova
  • Miquel Nofrarias
  • Eric Plagnol
  • Stefano Vitale
Original Article
  • 202 Downloads

Abstract

A statistical procedure for the analysis of time-frequency noise maps is presented and applied to LISA Pathfinder mission synthetic data. The procedure is based on the Kolmogorov-Smirnov like test that is applied to the analysis of time-frequency noise maps produced with the spectrogram technique. The influence of the finite size windowing on the statistic of the test is calculated with a Monte Carlo simulation for 4 different windows type. Such calculation demonstrate that the test statistic is modified by the correlations introduced in the spectrum by the finite size of the window and by the correlations between different time bins originated by overlapping between windowed segments. The application of the test procedure to LISA Pathfinder data demonstrates the test capability of detecting non-stationary features in a noise time series that is simulating low frequency non-stationary noise in the system.

Keywords

Kolmogorov-Smirnov test Spectrogram Noise analysis Time-frequency map LISA Pathfinder Gravitational waves eLISA LISA 

Notes

Acknowledgements

This research was supported by the Centre National d’Études Spatiales (CNES).

References

  1. 1.
    Feller, W.: Ann. Math. Statist. 19(2), 177 (1948)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Congedo, G., Ferraioli, L., Hueller, M., De Marchi, F., Vitale, S., Armano, M., Hewitson, M., Nofrarias, M.: Phys. Rev. D 85(12), 122004 (2012)CrossRefADSGoogle Scholar
  3. 3.
    Antonucci, F., et al.: Class. Quantum Gravity 28(9), 094002 (2011)CrossRefADSGoogle Scholar
  4. 4.
    Antonucci, F., et al.: Class. Quantum Gravity 28(9) (2011)Google Scholar
  5. 5.
    Antonucci, F., et al.: Class. Quantum Gravity 28(9), 094006 (2011)CrossRefADSGoogle Scholar
  6. 6.
    Armano, M., et al.: Class. Quantum Gravity 26(9), 094001 (2009)CrossRefADSGoogle Scholar
  7. 7.
    Ferraioli, L., Congedo, G., Hueller, M., Vitale, S., Hewitson, M., Nofrarias, M., Armano, M.: Phys. Rev. D 84, 122003 (2011)CrossRefADSGoogle Scholar
  8. 8.
    Percival, D.B., Walden, A.T.: Spectral Analysis for Physical Applications. Cambridge University Press, Cambridge, UK (1993)CrossRefzbMATHGoogle Scholar
  9. 9.
    Harris, F.: IEEE Proc. 66(1), 51 (1978)CrossRefADSGoogle Scholar
  10. 10.
    NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/ (2013)
  11. 11.
    Ferraioli, L., Hueller, M., Vitale, S.: Class. Quantum Gravity 26(9), 094013 (2009)CrossRefADSGoogle Scholar
  12. 12.
    Ferraioli, L., Hueller, M., Vitale, S., Heinzel, G., Hewitson, M., Monsky, A., Nofrarias, M.: Phys. Rev. D 82(4), 042001 (2010)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Luigi Ferraioli
    • 1
    • 6
    Email author
  • Michele Armano
    • 2
  • Heather Audley
    • 3
  • Giuseppe Congedo
    • 4
  • Ingo Diepholz
    • 3
  • Ferran Gibert
    • 5
  • Martin Hewitson
    • 3
  • Mauro Hueller
    • 4
  • Nikolaos Karnesis
    • 5
  • Natalia Korsakova
    • 3
  • Miquel Nofrarias
    • 5
  • Eric Plagnol
    • 1
  • Stefano Vitale
    • 4
  1. 1.APC, Université Paris Diderot, CNRS/IN2P3, CEA/Ifru, Observatoire de Paris, Sorbonne Paris CitéParis Cedex 13France
  2. 2.SRE-OD ESACEuropean Space AgencyMadridSpain
  3. 3.Albert-Einstein-InstitutMax-Planck-Institut fuer Gravitationsphysik und Universität HannoverHannoverGermany
  4. 4.University of Trento and INFNPovo (Trento)Italy
  5. 5.Facultat de CiènciesInstitut de Ciències de l’Espai, (CSIC-IEEC)BellaterraSpain
  6. 6.Institut für GeophysikETH ZürichZürichSwitzerland

Personalised recommendations