Experimental Astronomy

, Volume 40, Issue 2–3, pp 481–500 | Cite as

Unveiling the atmospheres of giant exoplanets with an EChO-class mission

  • Vivien Parmentier
  • Adam P. Showman
  • Julien de Wit
Original Article

Abstract

More than a thousand exoplanets have been discovered over the last decade. Perhaps more excitingly, probing their atmospheres has become possible. With current data we have glimpsed the diversity of exoplanet atmospheres that will be revealed over the coming decade. However, numerous questions concerning their chemical composition, thermal structure, and atmospheric dynamics remain to be answered. More observations of higher quality are needed. In the next years, the selection of a space-based mission dedicated to the spectroscopic characterization of exoplanets would revolutionize our understanding of the physics of planetary atmospheres. Such a mission was proposed to the ESA cosmic vision program in 2014. Our paper is therefore based on the planned capabilities of the Exoplanet Characterization Observatory (EChO), but it should equally apply to any future mission with similar characteristics. With its large spectral coverage (0.4 − 16 μm), high spectral resolution (λλ > 300 below 5 μm and λλ > 30 above 5 μm) and 1.5m mirror, a future mission such as EChO will provide spectrally resolved transit lightcurves, secondary eclipses lightcurves, and full phase curves of numerous exoplanets with an unprecedented signal-to-noise ratio. In this paper, we review some of today’s main scientific questions about gas giant exoplanets atmospheres, for which a future mission such as EChO will bring a decisive contribution.

Keywords

Exoplanet Atmosphere EChO 

References

  1. 1.
    Agol, E., Cowan, N.B., Knutson, H.A., Deming, D., Steffen, J.H., Henry, G.W., Charbonneau, D.: The climate of HD 189733b from 14 transits and eclipses measured by Spitzer. ApJ 721, 1861–1877 (2010). doi:10.1088/0004-637X/721/2/1861. arXiv:1007.4378 CrossRefADSGoogle Scholar
  2. 2.
    Agúndez, M., Parmentier, V., Venot, O., Hersant, F., Selsis, F.: Pseudo 2d chemical model of hot-jupiter atmospheres: application to hd 209458b and hd 189733b. A&A 564, A73 (2014). doi:10.1051/0004-6361/201322895 CrossRefADSGoogle Scholar
  3. 3.
    Ballester, G.E., Sing, D.K., Herbert, F.: The signature of hot hydrogen in the atmosphere of the extrasolar planet HD 209458b. Nature 445, 511–514 (2007). doi:10.1038/nature05525 CrossRefADSGoogle Scholar
  4. 4.
    Barman, T.S., Hauschildt, P.H., Schweitzer, A., Stancil, P.C., Baron, E., Allard, F.: Non-LTE effects of Na I in the atmosphere of HD 209458b. ApJ 569, L51–L54 (2002). doi:10.1086/340579. arXiv:astro-ph/0203139 CrossRefADSGoogle Scholar
  5. 5.
    Barstow, J.K., Aigrain, S., Irwin, P.G.J., Bowles, N., Fletcher, L.N., Lee, J.M.: On the potential of the EChO mission to characterize gas giant atmospheres. MNRAS 430, 1188–1207 (2013). doi:10.1093/mnras/sts686 CrossRefADSGoogle Scholar
  6. 6.
    Batygin, K., Stevenson, D.J.: Inflating hot jupiters with ohmic dissipation. ApJ 714, L238–L243 (2010). doi:10.1088/2041-8205/714/2/L238. arXiv:1002.3650 CrossRefADSGoogle Scholar
  7. 7.
    Batygin, K., Stanley, S., Stevenson, D.J.: Magnetically controlled circulation on hot extrasolar planets. ApJ 776, 53 (2013). doi:10.1088/0004-637X/776/1/53. arXiv:1307.8038 CrossRefADSGoogle Scholar
  8. 8.
    Bean, J.L., Désert, J.M., Kabath, P., Stalder, B., Seager, S., Miller-Ricci Kempton, E., Berta, Z.K., Homeier, D., Walsh, S., Seifahrt, A.: The optical and near-infrared transmission spectrum of the super-earth GJ 1214b: Further evidence for a metal-rich atmosphere. ApJ 743, 92 (2011). doi:10.1088/0004-637X/743/1/92. arXiv:1109.0582 CrossRefADSGoogle Scholar
  9. 9.
    Berta, Z.K., Charbonneau, D., Désert, J.M., Miller-Ricci Kempton, E., McCullough, P.R., Burke, C.J., Fortney, J.J., Irwin, J., Nutzman, P., Homeier, D.: The flat transmission spectrum of the super-earth GJ1214b from wide field camera 3 on the hubble space telescope. ApJ 747, 35 (2012). doi:10.1088/0004-637X/747/1/35. arXiv:1111.5621 CrossRefADSGoogle Scholar
  10. 10.
    Bodenheimer, P., Lin, D.N.C., Mardling, R.A.: On the tidal inflation of short-period extrasolar planets. ApJ 548, 466–472 (2001). doi:10.1086/318667 CrossRefADSGoogle Scholar
  11. 11.
    Burrows, A., Budaj, J., Hubeny, I.: Theoretical spectra and light curves of close-in extrasolar giant planets and comparison with data. ApJ 678, 1436–1457 (2008). doi:10.1086/533518. arXiv:0709.4080 CrossRefADSGoogle Scholar
  12. 12.
    Chabrier, G., Baraffe, I.: Heat transport in giant (Exo)planets: a new perspective. ApJ 661, L81—L84 (2007). doi:10.1086/518473. arXiv:astro-ph/0703755 CrossRefADSGoogle Scholar
  13. 13.
    Chamberlain, J.W., Hunten, D.M.: Theory of planetary atmospheres. An introduction to their physics andchemistry (1987)Google Scholar
  14. 14.
    Cho, J.Y.K., Menou, K., Hansen, B.M.S., Seager, S.: The changing face of the extrasolar giant planet HD 209458b. ApJ 587, L117–L120 (2003). doi:10.1086/375016. arXiv:astro-ph/0209227 CrossRefADSGoogle Scholar
  15. 15.
    Cho, J.Y.K., Menou, K., Hansen, B.M.S., Seager, S.: Atmospheric circulation of close-in extrasolar giant Planets. I. Global, barotropic, adiabatic simulations. ApJ 675, 817–845 (2008). doi:10.1086/524718 CrossRefADSGoogle Scholar
  16. 16.
    Cooper, C.S., Showman, A.P.: Dynamic meteorology at the photosphere of HD 209458b. ApJ 629, L45—L48 (2005). doi:10.1086/444354. arXiv:astro-ph/0502476 CrossRefADSGoogle Scholar
  17. 17.
    Cooper, C.S., Showman, A.P.: Dynamics and disequilibrium carbon chemistry in hot jupiter atmospheres, with application to HD 209458b. ApJ 649, 1048–1063 (2006). doi:10.1086/506312. arXiv:astro-ph/0602477 CrossRefADSGoogle Scholar
  18. 18.
    Cowan, N.B.: The statistics of albedo and heat recirculation on hot exoplanets. ApJ 729, 54 (2011). doi:10.1088/0004-637X/729/1/54. arXiv:1001.0012 CrossRefADSGoogle Scholar
  19. 19.
    Crossfield, I.J.M., Hansen, B.M.S., Harrington, J., Cho, J.Y.K., Deming, D., Menou, K., Seager, S.: A new 24 μm phase curve for υ andromedae b. ApJ 723, 1436–1446 (2010). doi:10.1088/0004-637X/723/2/1436. arXiv:1008.0393 CrossRefADSGoogle Scholar
  20. 20.
    Crossfield, I.J.M., Barman, T., Hansen, B.M.S., Howard, A.W.: Warm ice giant GJ 3470b. I. A flat transmission spectrum indicates a hazy, low-methane, and/or metal-rich atmosphere. A&A 559, A33 (2013). doi:10.1051/0004-6361/201322278. arXiv:1308.6580 CrossRefADSGoogle Scholar
  21. 21.
    de Wit, J., Seager, S.: Constraining exoplanet mass from transmission spectroscopy. Science 342, 1473–1477 (2013). doi:10.1126/science.1245450 CrossRefADSGoogle Scholar
  22. 22.
    de Wit, J., Gillon, M., Demory, B.O., Seager, S.: Towards consistent mapping of distant worlds: secondary-eclipse scanning of the exoplanet HD 189733b. A&A 548, A128 (2012). doi:10.1051/0004-6361/201219060. arXiv:1202.3829 CrossRefADSGoogle Scholar
  23. 23.
    Deming, D., Wilkins, A., McCullough, P., Burrows, A., Fortney, J.J., Agol, E., Dobbs-Dixon, I., Madhusudhan, N., Crouzet, N., Desert, J.M., Gilliland, R.L., Haynes, K., Knutson, H.A., Line, M., Magic, Z., Mandell, A.M., Ranjan, S., Charbonneau, D., Clampin, M., Seager, S., Showman, A.P.: Infrared transmission spectroscopy of the exoplanets HD 209458b and XO-1b using the wide field camera-3 on the hubble space telescope. ApJ 774, 95 (2013). doi:10.1088/0004-637X/774/2/95. arXiv:1302.1141 CrossRefADSGoogle Scholar
  24. 24.
    Demory, B.O., de Wit, J., Lewis, N., Fortney, J., Zsom, A., Seager, S., Knutson, H., Heng, K., Madhusudhan, N., Gillon, M., Barclay, T., Desert, J.M., Parmentier, V., Cowan, N.B.: ApJ 776, L25 (2013). doi:10.1088/2041-8205/776/2/L25. arXiv:1309.7894 CrossRefADSGoogle Scholar
  25. 25.
    Désert, J.M., Vidal-Madjar, A., Lecavelier Des Etangs, A., Sing, D., Ehrenreich, D., Hébrard, G., Ferlet, R.: TiO and VO broad band absorption features in the optical spectrum of the atmosphere of the hot-Jupiter HD 209458b. A&A 492, 585–592 (2008). doi:10.1051/0004-6361:200810355. arXiv:0809.1865 CrossRefADSGoogle Scholar
  26. 26.
    Dobbs-Dixon, I., Lin, D.N.C.: Atmospheric dynamics of short-period extrasolar gas giant planets. I. Dependence of nightside temperature on opacity. ApJ 673, 513–525 (2008). doi:10.1086/523786. arXiv:0704.3269 CrossRefADSGoogle Scholar
  27. 27.
    Dobbs-Dixon, I., Cumming, A., Lin, D.N.C.: Radiative hydrodynamic simulations of HD209458b: Temporal variability. ApJ 710, 1395–1407 (2010). doi:10.1088/0004-637X/710/2/1395. arXiv:1001.0982 CrossRefADSGoogle Scholar
  28. 28.
    Ferraz-Mello, S.: Tidal synchronization of close-in satellites and exoplanets. A rheophysical approach. Celest. Mech. Dyn. Astron. 116, 109–140 (2013). doi:10.1007/s10569-013-9482-y. arXiv:1204.3957 MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    Fortney, J.J.: The effect of condensates on the characterization of transiting planet atmospheres with transmission spectroscopy. MNRAS 364, 649–653 (2005). doi:10.1111/j.1365-2966.2005.09587.x. arXiv:astro-ph/0509292 CrossRefADSGoogle Scholar
  30. 30.
    Fortney, J.J., Lodders, K., Marley, M.S., Freedman, R.S.: A unified theory for the atmospheres of the hot and very hot jupiters: Two classes of irradiated atmospheres. ApJ 678, 1419–1435 (2008). doi:10.1086/528370. arXiv:0710.2558 CrossRefADSGoogle Scholar
  31. 31.
    Guillot, T.: The interiors of giant planets: Models and outstanding questions. Ann. Rev. Earth Planet. Sci. 33, 493–530 (2005). doi:10.1146/annurev.earth.32.101802.120325. arXiv:astro-ph/0502068 CrossRefADSGoogle Scholar
  32. 32.
    Guillot, T., Havel, M.: An analysis of the CoRoT-2 system: a young spotted star and its inflated giant planet. A&A 527, A20 (2011). doi:10.1051/0004-6361/201015051. arXiv:1010.1078 CrossRefADSGoogle Scholar
  33. 33.
    Guillot, T., Showman, A.P.: Evolution of “51 Pegasus b-like” planets. A&A 385, 156–165 (2002). doi:10.1051/0004-6361:20011624. arXiv:astro-ph/0202234 CrossRefADSGoogle Scholar
  34. 34.
    Guillot, T., Burrows, A., Hubbard, W.B., Lunine, J.I., Saumon, D.: Giant planets at small orbital distances. ApJ 459, L35 (1996). doi:10.1086/309935. arXiv:astro-ph/9511109 CrossRefADSGoogle Scholar
  35. 35.
    Hansen, C.J., Schwartz, J.C., Cowan, N.B.: Broadband Eclipse Spectra of Exoplanets are Featureless. arXiv:1402.6699 e-prints. (2014)
  36. 36.
    Heng, K.: On the existence of shocks in irradiated exoplanetary atmospheres. ApJ 761, L1 (2012). doi:10.1088/2041-8205/761/1/L1. arXiv:1210.8243 e-prints.CrossRefADSGoogle Scholar
  37. 37.
    Heng, K., Demory, B.O.: Understanding trends associated with clouds in irradiated exoplanets. ApJ 777, 100 (2013). doi:10.1088/0004-637X/777/2/100. arXiv:1309.5956 CrossRefADSGoogle Scholar
  38. 38.
    Heng, K., Frierson, D.M.W., Phillipps, P.J.: Atmospheric circulation of tidally locked exoplanets: II. Dual-band radiative transfer and convective adjustment. MNRAS 418, 2669–2696 (2011a). doi:10.1111/j.1365-2966.2011.19658.x. arXiv:1105.4065 CrossRefADSGoogle Scholar
  39. 39.
    Heng, K., Menou, K., Phillipps, P.J.: Atmospheric circulation of tidally locked exoplanets: a suite of benchmark tests for dynamical solvers. MNRAS 413, 2380–2402 (2011b). doi:10.1111/j.1365-2966.2011.18315.x. arXiv:1010.1257 CrossRefADSGoogle Scholar
  40. 40.
    Huang, X., Cumming, A.: Ohmic dissipation in the interiors of hot jupiters. ApJ 757, 47 (2012). doi:10.1088/0004-637X/757/1/47. arXiv:1207.3278 CrossRefADSGoogle Scholar
  41. 41.
    Hubeny, I., Burrows, A., Sudarsky, D.: ApJ 594, 1011–1018 (2003). doi:10.1086/377080. arXiv:astro-ph/0305349 CrossRefADSGoogle Scholar
  42. 42.
    Huitson, C.M., Sing, D.K., Vidal-Madjar, A., Ballester, G.E., Lecavelier des Etangs, A., Désert, J.M., Pont, F.: Temperature-pressure profile of the hot Jupiter HD 189733b from HST sodium observations: detection of upper atmospheric heating. MNRAS 422, 2477–2488 (2012). doi:10.1111/j.1365-2966.2012.20805.x. arXiv:1202.4721 CrossRefADSGoogle Scholar
  43. 43.
    Huitson, C.M., Sing, D.K., Pont, F., Fortney, J.J., Burrows, A.S., Wilson, P.A., Ballester, G.E., Nikolov, N., Gibson, N.P., Deming, D., Aigrain, S., Evans, T.M., Henry, G.W., Lecavelier des Etangs, A., Showman, A.P., Vidal-Madjar, A., Zahnle, K.: An HST optical-to-near-IR transmission spectrum of the hot Jupiter WASP-19b: detection of atmospheric water and likely absence of TiO. MNRAS 434, 3252–3274 (2013). doi:10.1093/mnras/stt1243. arXiv:1307.2083 CrossRefADSGoogle Scholar
  44. 44.
    Iro, N., Bézard, B., Guillot, T.: A time-dependent radiative model of HD 209458b. A&A 436, 719–727 (2005). doi:10.1051/0004-6361:20048344. arXiv:astro-ph/0409468 CrossRefADSGoogle Scholar
  45. 45.
    Kataria, T., Showman, A.P., Lewis, N.K., Fortney, J.J., Marley, M.S., Freedman, R.S.: Three-dimensional atmospheric circulation of hot jupiters on highly eccentric orbits. ApJ 767, 76 (2013). doi:10.1088/0004-637X/767/1/76. arXiv:1208.3795 CrossRefADSGoogle Scholar
  46. 46.
    Kirkpatrick, J.D.: New spectral types L and T. ARA&A 43, 195–245 (2005). doi:10.1146/annurev.astro.42.053102.134017 CrossRefADSGoogle Scholar
  47. 47.
    Knutson, H.A., Charbonneau, D., Allen, L.E., Fortney, J.J., Agol, E., Cowan, N.B., Showman, A.P., Cooper, C.S., Megeath, S.T.: A map of the day-night contrast of the extrasolar planet HD 189733b. Nature 447, 183–186 (2007). doi:10.1038/nature05782. arXiv:0705.0993 CrossRefADSGoogle Scholar
  48. 48.
    Knutson, H.A., Charbonneau, D., Allen, L.E., Burrows, A., Megeath, S.T.: The 3.6-8.0 μm broadband emission spectrum of HD 209458b: Evidence for an atmospheric temperature inversion. ApJ 673, 526–531 (2008). doi:10.1086/523894. arXiv:0709.3984 CrossRefADSGoogle Scholar
  49. 49.
    Knutson, H.A., Charbonneau, D., Cowan, N.B., Fortney, J.J., Showman, A.P., Agol, E., Henry, G.W., Everett, M.E., Allen, L.E.: Multiwavelength constraints on the day-night circulation patterns of HD 189733b. ApJ 690, 822–836 (2009). doi:10.1088/0004-637X/690/1/822. arXiv:0802.1705 CrossRefADSGoogle Scholar
  50. 50.
    Knutson, H.A., Howard, A.W., Isaacson, H.: A correlation between stellar activity and hot jupiter emission spectra. ApJ 720, 1569–1576 (2010). doi:10.1088/0004-637X/720/2/1569. arXiv:1004.2702 CrossRefADSGoogle Scholar
  51. 51.
    Knutson, H.A., Lewis, N., Fortney, J.J., Burrows, A., Showman, A.P., Cowan, N.B., Agol, E., Aigrain, S., Charbonneau, D., Deming, D., Désert, J.M., Henry, G.W., Langton, J., Laughlin, G.: 3.6 and 4.5 μm phase curves and evidence for non-equilibrium chemistry in the atmosphere of extrasolar planet HD 189733b. ApJ, 22 (2012). doi:10.1088/0004-637X/754/1/22. arXiv:1206.6887
  52. 52.
    Lecavelier Des Etangs, A., Pont, F., Vidal-Madjar, A., Sing, D.: Rayleigh scattering in the transit spectrum of HD 189733b. A&A 481, L83–L86 (2008). doi:10.1051/0004-6361:200809388. arXiv:0802.3228 CrossRefADSGoogle Scholar
  53. 53.
    Lecavelier Des Etangs, A., Ehrenreich, D., Vidal-Madjar, A., Ballester, G.E., Désert, J.M., Ferlet, R., Hébrard, G., Sing, D.K., Tchakoumegni, K.O., Udry, S.: Evaporation of the planet HD 189733b observed in H I Lyman- α. A&A 514, A72 (2010). doi:10.1051/0004-6361/200913347. arXiv:1003.2206 CrossRefADSGoogle Scholar
  54. 54.
    Leconte, J., Chabrier, G.: A new vision of giant planet interiors: Impact of double diffusive convection. A&A 540, A20 (2012). doi:10.1051/0004-6361/201117595. arXiv:1201.4483 CrossRefADSGoogle Scholar
  55. 55.
    Lewis, N.K., Showman, A.P., Fortney, J.J., Marley, M.S., Freedman, R.S., Lodders, K.: Atmospheric circulation of eccentric hot neptune GJ436b. ApJ 720, 344–356 (2010). doi:10.1088/0004-637X/720/1/344. arXiv:1007.2942 CrossRefADSGoogle Scholar
  56. 56.
    Lewis, N.K., Knutson, H.A., Showman, A.P., Cowan, N.B., Laughlin, G., Burrows, A., Deming, D., Crepp, J.R., Mighell, K.J., Agol, E., Bakos, G.Á., Charbonneau, D., Désert, J.M., Fischer, D.A., Fortney, J.J., Hartman, J.D., Hinkley, S., Howard, A.W., Johnson, J.A., Kao, M., Langton, J., Marcy, G.W.: Orbital phase variations of the eccentric giant planet HAT-P-2b. ApJ 766, 95 (2013). doi:10.1088/0004-637X/766/2/95. arXiv:1302.5084 CrossRefADSGoogle Scholar
  57. 57.
    Li, J., Goodman, J.: Circulation and dissipation on hot jupiters. ApJ 725, 1146–1158 (2010). doi:10.1088/0004-637X/725/1/1146. arXiv:1005.0589 CrossRefADSGoogle Scholar
  58. 58.
    Lubow, S.H., Tout, C.A., Livio, M.: Resonant tides in close orbiting planets. ApJ 484, 866 (1997). doi:10.1086/304369 CrossRefADSGoogle Scholar
  59. 59.
    Madhusudhan, N., Seager, S.: On the inference of thermal inversions in hot jupiter atmospheres. ApJ 725, 261–274 (2010). doi:10.1088/0004-637X/725/1/261. arXiv:1005.0589 CrossRefADSGoogle Scholar
  60. 60.
    Madhusudhan, N., Mousis, O., Johnson, T.V., Lunine, J.I.: Carbon-rich giant planets: Atmospheric chemistry, thermal inversions, spectra, and formation conditions. ApJ 743, 191 (2011). doi:10.1088/0004-637X/743/2/191. arXiv:1109.3183 CrossRefADSGoogle Scholar
  61. 61.
    Majeau, C., Agol, E., Cowan, N.B.: A two-dimensional infrared map of the extrasolar planet HD 189733b. ApJ 747, L20 (2012). doi:10.1088/2041-8205/747/2/L20. arXiv:1202.1883 CrossRefADSGoogle Scholar
  62. 62.
    Menou, K.: Thermo-resistive instability of hot planetary atmospheres. ApJ 754, L9 (2012). doi:10.1088/2041-8205/754/1/L9. arXiv:1206.3363 CrossRefADSGoogle Scholar
  63. 63.
    Menou, K., Rauscher, E.: Atmospheric circulation of hot jupiters: A shallow three-dimensional model. ApJ 700, 887–897 (2009). doi:10.1088/0004-637X/700/1/887. arXiv:0809.1671 CrossRefADSGoogle Scholar
  64. 64.
    Miller-Ricci Kempton, E., Rauscher, E.: Constraining high-speed winds in exoplanet atmospheres through observations of anomalous doppler shifts during transit. ApJ 751, 117 (2012). doi:10.1088/0004-637X/751/2/117. arXiv:1109.2270 CrossRefADSGoogle Scholar
  65. 65.
    Morley, C.V., Fortney, J.J., Kempton, E.M.R., Marley, M.S., Vissher, C., Zahnle, K.: Quantitatively assessing the role of clouds in the transmission spectrum of GJ 1214b. ApJ 775, 33 (2013). doi:10.1088/0004-637X/775/1/33. arXiv:1305.4124 CrossRefADSGoogle Scholar
  66. 66.
    Moses, J.I., Visscher, C., Fortney, J.J., Showman, A.P., Lewis, N.K., Griffith, C.A., Klippenstein, S.J., Shabram, M., Friedson, A.J., Marley, M.S., Freedman, R.S.: Disequilibrium carbon, oxygen, and nitrogen chemistry in the atmospheres of HD 189733b and HD 209458b. ApJ 737, 15 (2011). doi:10.1088/0004-637X/737/1/15. arXiv:1102.0063 CrossRefADSGoogle Scholar
  67. 67.
    Nascimbeni, V., Piotto, G., Pagano, I., Scandariato, G., Sani, E., Fumana, M.: The blue sky of GJ3470b: the atmosphere of a low-mass planet unveiled by ground-based photometry. A&A 559, A32 (2013). doi:10.1051/0004-6361/201321971. arXiv:1308.6765 CrossRefADSGoogle Scholar
  68. 68.
    Parmentier, V., Guillot, T.: A non-grey analytical model for irradiated atmospheres. I. Derivation. A&A 562, A133 (2014). doi:10.1051/0004-6361/201322342. arXiv:1311.6597 CrossRefADSGoogle Scholar
  69. 69.
    Parmentier, V., Showman, A.P., Lian, Y.: 3D mixing in hot Jupiters atmospheres. I. Application to the day/night cold trap in HD 209458b. A&A 558, A91 (2013). doi:10.1051/0004-6361/201321132 CrossRefADSGoogle Scholar
  70. 70.
    Parmentier, V., Guillot, T., Fortney, J.J., Marley, M.S.: A non-grey analytical model for irradiated atmospheres. II: Analytical vs. numerical solutions. arXiv:1311.6322 (2014)
  71. 71.
    Perez-Becker, D., Showman, A.P.: Atmospheric heat redistribution on hot jupiters. ApJ 776, 134 (2013). doi:10.1088/0004-637X/776/2/134. arXiv:1306.4673 CrossRefADSGoogle Scholar
  72. 72.
    Perna, R., Menou, K., Rauscher, E.: Magnetic drag on hot jupiter atmospheric winds. ApJ 719, 1421–1426 (2010). doi:10.1088/0004-637X/719/2/1421. arXiv:1003.3838 CrossRefADSGoogle Scholar
  73. 73.
    Perna, R., Menou, K., Rauscher, E.: ApJ 724, 313–317 (2010). doi:10.1088/0004-637X/724/1/313. arXiv:1009.3273 CrossRefADSGoogle Scholar
  74. 74.
    Perna, R., Heng, K., Pont, F.: The effects of irradiation on hot jovian atmospheres: Heat redistribution and energy dissipation. ApJ 751, 59 (2012). doi:10.1088/0004-637X/751/1/59. arXiv:1201.5391 CrossRefADSGoogle Scholar
  75. 75.
    Pont, F., Sing, D.K., Gibson, N.P., Aigrain, S., Henry, G., Husnoo, N.: The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations. MNRAS (2013). doi:10.1093/mnras/stt651. arXiv:1210.4163
  76. 76.
    Rauscher, E., Menou, K.: Three-dimensional modeling of hot jupiter atmospheric flows. ApJ 714, 1334–1342 (2010). doi:10.1088/0004-637X/714/2/1334. arXiv:0907.2692 CrossRefADSGoogle Scholar
  77. 77.
    Rauscher, E., Menou, K.: A general circulation model for gaseous exoplanets with double-gray radiative transfer. ApJ 750, 96 (2012a). doi:10.1088/0004-637X/750/2/96. arXiv:1112.1658 CrossRefADSGoogle Scholar
  78. 78.
    Rauscher, E., Menou, K.: The role of drag in the energetics of strongly forced exoplanet atmospheres. ApJ 745, 78 (2012b). doi:10.1088/0004-637X/745/1/78. arXiv:1105.2321 CrossRefADSGoogle Scholar
  79. 79.
    Rauscher, E., Menou, K.: Three-dimensional atmospheric circulation models of HD 189733b and HD 209458b with consistent magnetic drag and ohmic dissipation. ApJ 764, 103 (2013). doi:10.1088/0004-637X/764/1/103. arXiv:1208.2274 CrossRefADSGoogle Scholar
  80. 80.
    Rauscher, E., Showman, A.P.: The influence of differential irradiation and circulation on the thermal evolution of gas giant planets. I. Upper limits from radiative equilibrium. ApJ 784, 160 (2014). doi:10.1088/0004-637X/784/2/160. arXiv:1309.7052 CrossRefADSGoogle Scholar
  81. 81.
    Rauscher, E., Menou, K., Seager, S., Deming, D., Cho, J.Y.K., Hansen, B.M.S.: Toward eclipse mapping of hot jupiters. ApJ 664, 1199–1209 (2007). doi:10.1086/519213. arXiv:astro-ph/0612412 CrossRefADSGoogle Scholar
  82. 82.
    Rogers, T.M., Komacek, T.D.: Magnetic effects in hot jupiter atmospheres. Submitted to ApJ 1401.5815 (2014)
  83. 83.
    Rogers, T.M., Showman, A.P.: Magnetohydrodynamic Simulations of the Atmosphere of HD 209458b. ApJ 782, L4 (2014). doi:10.1088/2041-8205/782/1/L4. arXiv:1401.5815 CrossRefADSGoogle Scholar
  84. 84.
    Showman, A.P, Guillot, T.: Atmospheric circulation and tides of “51 Pegasus b-like” planets. A&A 385, 166–180 (2002). doi:10.1051/0004-6361:20020101. arXiv:astro-ph/0202236 CrossRefADSGoogle Scholar
  85. 85.
    Showman, A.P., Polvani, L.M.: Equatorial superrotation on tidally locked exoplanets. ApJ 738, 71 (2011). doi:10.1088/0004-637X/738/1/71. arXiv:1103.3101 CrossRefADSGoogle Scholar
  86. 86.
    Showman, A.P., Cooper, C.S., Fortney, J.J., Marley, M.S.: Atmospheric circulation of hot jupiters: Three-dimensional circulation models of HD 209458b and HD 189733b with simplified forcing. ApJ 682, 559–576 (2008). doi:10.1086/589325. arXiv:0802.0327 CrossRefADSGoogle Scholar
  87. 87.
    Showman, A.P., Fortney, J.J., Lian, Y., Marley, M.S., Freedman, R.S., Knutson, H.A., Charbonneau, D.: Atmospheric circulation of hot jupiters: Coupled radiative-dynamical general circulation model simulations of HD 189733b and HD 209458b. ApJ 699, 564–584 (2009). doi:10.1088/0004-637X/699/1/564. arXiv:0809.2089 CrossRefADSGoogle Scholar
  88. 88.
    Showman, A.P., Wordsworth, R.D., Merlis, T.M.: Atmospheric circulation of terrestrial exoplanets. LPI Contrib. 1675, 8090 (2012)ADSGoogle Scholar
  89. 89.
    Showman, A.P., Fortney, J.J., Lewis, N.K., Shabram, M.: Doppler signatures of the atmospheric circulation on hot jupiters. ApJ 762, 24 (2013). doi:10.1088/0004-637X/762/1/24.1207.5639 note=arXiv:0809.2089 CrossRefADSGoogle Scholar
  90. 90.
    Sing, D.K., Vidal-Madjar, A., Lecavelier des Etangs, A., Désert, J.M., Ballester, G., Ehrenreich, D.: Determining atmospheric conditions at the terminator of the hot jupiter HD 209458b. ApJ 686, 667–673 (2008). doi:10.1086/590076. arXiv:0803.1054 CrossRefADSGoogle Scholar
  91. 91.
    Sing, D.K., Lecavelier des Etangs, A., Fortney, J.J., Burrows, A.S., Pont, F., Wakeford, H.R., Ballester, G.E., Nikolov, N., Henry, G.W., Aigrain, S., Deming, D., Evans, T.M., Gibson, N.P., Huitson, C.M., Knutson, H., Showman, A.P., Vidal-Madjar, A., Wilson, P.A., Williamson, M.H., Zahnle, K.: HST hot-Jupiter transmission spectral survey: evidence for aerosols and lack of TiO in the atmosphere of WASP-12b. MNRAS (2013). doi:10.1093/mnras/stt1782. arXiv:1309.5261
  92. 92.
    Spiegel, D.S., Silverio, K., Burrows, A.: ApJ 699, 1487–1500 (2009). doi:10.1088/0004-637X/699/2/1487. arXiv:0902.3995 CrossRefADSGoogle Scholar
  93. 93.
    Stevenson, K.: Revealing distant worlds with ground-based spectroscopy. In: Talk at the Exoclimes III Conference (2014)Google Scholar
  94. 94.
    Thrastarson, H.T., Cho, J.Y.: Effects of initial flow on close-in planet atmospheric circulation. ApJ 716, 144–153 (2010). doi:10.1088/0004-637X/716/1/144. arXiv:1004.2871 CrossRefADSGoogle Scholar
  95. 95.
    Thrastarson, H.T., Cho, J.Y.: Relaxation time and dissipation interaction in hot planet atmospheric flow simulations. ApJ 729, 117 (2011). doi:10.1088/0004-637X/729/2/117 CrossRefADSGoogle Scholar
  96. 96.
    Tinetti, G., Beaulieu, J.P., Henning, T., Meyer, M., Micela, G., Ribas, I., Stam, D., Swain, M., Krause, O., Ollivier, M., Pace, E., Swinyard, B., Aylward, A., van Boekel, R., Coradini, A., Encrenaz, T., Snellen, I., Zapatero-Osorio, M.R., Bouwman, J., Cho, J.Y.K., Coudé de Foresto, V., Guillot, T., Lopez-Morales, M., Mueller-Wodarg, I., Palle, E., Selsis, F., Sozzetti, A., Ade, P.A.R., Achilleos, N., Adriani, A., Agnor, C.B., Afonso, C., Allende Prieto, C., Bakos, G., Barber, R.J., Barlow, M., Batista, V., Bernath, P., Bézard, B., Bordé, P., Brown, L.R., Cassan, A., Cavarroc, C., Ciaravella, A., Cockell, C., Coustenis, A., Danielski, C., Decin, L., De Kok, R., Demangeon, O., Deroo, P., Doel, P., Drossart, P., Fletcher, L.N., Focardi, M., Forget, F., Fossey, S., Fouqué, P., Frith, J., Galand, M., Gaulme, P., Hernández, J.I.G., Grasset, O., Grassi, D., Grenfell, J.L., Griffin, M.J., Griffith, C.A., Grözinger, U., Guedel, M., Guio, P., Hainaut, O., Hargreaves, R., Hauschildt, P.H., Heng, K., Heyrovsky, D., Hueso, R., Irwin, P., Kaltenegger, L., Kervella, P., Kipping, D., Koskinen, T.T., Kovács, G., La Barbera, A., Lammer, H., Lellouch, E., Leto, G., Lopez Morales, M., Lopez Valverde, M.A., Lopez-Puertas, M., Lovis, C., Maggio, A., Maillard, J.P., Maldonado Prado, J., Marquette, J.B., Martin-Torres, F.J., Maxted, P., Miller, S., Molinari, S., Montes, D., Moro-Martin, A., Moses, J.I., Mousis, O., Nguyen Tuong, N., Nelson, R., Orton, G.S., Pantin, E., Pascale, E., Pezzuto, S., Pinfield, D., Poretti, E., Prinja, R., Prisinzano, L., Rees, J.M., Reiners, A., Samuel, B., Sánchez-Lavega, A., Forcada, J.S., Sasselov, D., Savini, G., Sicardy, B., Smith, A., Stixrude, L., Strazzulla, G., Tennyson, J., Tessenyi, M., Vasisht, G., Vinatier, S., Viti, S., Waldmann, I., White, G.J., Widemann, T., Wordsworth, R., Yelle, R., Yung, Y., Yurchenko, S.N.: EChO. Exoplanet characterisation observatory. Exp. Astron. 34, 311–353 (2012). doi:10.1007/s10686-012-9303-4. arXiv:1112.2728 CrossRefADSGoogle Scholar
  97. 97.
    Vidal-Madjar, A., Lecavelier des Etangs, A., Désert, J.M., Ballester, G.E., Ferlet, R., Hébrard, G., Mayor, M.: An extended upper atmosphere around the extrasolar planet HD209458b. Nature 422, 143–146 (2003). doi:10.1038/nature01448 CrossRefADSGoogle Scholar
  98. 98.
    Vidal-Madjar, A., Sing, D.K., Lecavelier Des Etangs, A., Ferlet, R., Désert, J.M., Hébrard, G., Boisse, I., Ehrenreich, D., Moutou, C.: The upper atmosphere of the exoplanet HD 209458 b revealed by the sodium D lines. Temperature-pressure profile, ionization layer, and thermosphere. A&A 527, A110 (2011). doi:10.1051/0004-6361/201015698. arXiv:1012.5938 CrossRefADSGoogle Scholar
  99. 99.
    Wu, Y., Lithwick, Y.: Ohmic heating suspends, not reverses, the cooling contraction of hot jupiters. ApJ 763, 13 (2013). doi:10.1088/0004-637X/763/1/13. arXiv:1202.0026 CrossRefADSGoogle Scholar
  100. 100.
    Zahnle, K., Marley, M.S., Freedman, R.S., Lodders, K., Fortney, J.J.: Atmospheric sulfur photochemistry on hot jupiters. ApJ 701, L20–L24 (2009). doi:10.1088/0004-637X/701/1/L20. arXiv:0903.1663 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Vivien Parmentier
    • 1
  • Adam P. Showman
    • 2
  • Julien de Wit
    • 3
  1. 1.Laboratoire Lagrange, UMR7293Université de Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d’AzurNiceFrance
  2. 2.Department of Planetary Sciences, Lunar and Planetary LaboratoryUniversity of ArizonaTucsonUSA
  3. 3.Department of EarthAtmospheric and Planetary Sciences, MITCambridgeUSA

Personalised recommendations